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SUMMARY

The NLPAN computer code uses a finite-strip approach to the analysis of thin-walled prismatic
composite structures such as stiffened panels. The code can model in-plane axial loading, transverse
pressure loading, and constant through-the-thickness thermal loading, and can account for shape
imperfections. The NLPAN code represents an attempt to extend the buckling analysis of the VIPASA
computer code into the geometrically nonlinear regime. Buckling mode shapes generated using VIPASA
are used in NLPAN as global functions for representing displacements in the nonlinear regime. While
the NLPAN analysis is approximate in nature, it is computationally economical in comparison with
finite-element analysis, and is thus suitable for use in preliminary design and design optimization. This
document provides a comprehensive description of the theoretical approach of NLPAN, highlighting the
capabilities developed under NASA Grant NAG-1-1215. A discussion of some operational consider-
ations for the NLPAN code is included. NLPAN is applied to several test problems in order to demon-
strate new program capabilities, and to assess the accuracy of the code in modelling various types of
loading and response. User instructions for the NLPAN computer program are provided, including a
detailed description of the input requirements, and example input files for two stiffened-panel config-
urations.
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1. INTRODUCTION

Geometrically nonlinear analysis is gencrally required to accurately predict the ultimate strength
of compressively loaded thin-walled structures such as stiffened panels. The nonlinear analysis of such
configurations using finite elements is expensive in terms of computer resources. This has spurred the
development of finite strip methods [1-11] which are less general than the finite element method, but
which are computationally economical, and thus are suitable for use in iterative applications such as
preliminary design and design optimization. These methods vary widely with regard to the specific plate
or shell theory used, the geometric modelling flexibility, whether or not imperfections are accounted for,
the types of shape functions used, the targeted modes of response, the mathematical formulation used,
and the solution strategies employed. No attempt is made here to review or compare all of these
mcthods. A discussion of some of these methods can be found in [7].

This document concerns one such method which is implemented in the computer code NLPAN.
In philosophy, NLPAN represents an attempt to extend the buckling analysis of the VIPASA code [12]
(the analysis code within the PASCO stiffened-panel design code [13]) into the postbuckling and ge-
ometrically nonlinear regime. NLPAN uses buckling mode shapes obtained from VIPASA as global
shape functions for representing displacements in a geometrically nonlinear analysis. NLPAN uses a
stationary total potential energy formulation to obtain a set of nonlinear algebraic equations govemning
equilibrium. These equations have load-independent coefficients and a relatively small number of vari-
able modal amplitudes, allowing rapid exploration of the nonlinear regime. For simple rectangular plate
configurations, NLPAN degenerates to an exact series solution method for the von Karman nonlinear
plate equations.

NLPAN is limited to the treatment of prismatic structures which can be represented as assemblages
of rigidly linked plate strips. NLPAN can model the static elastic response of a structure to in-plane
normal loads, transverse pressure loads, and thermal loading which is uniform through the thickness of
each plate strip. Figure 1 depicts a typical configuration with the applied loadings. Shape imperfections
can be simulated. The side edges and longitudinal ends may have any of a variety of different support
conditions. The individual plate strips may have orthotropic material properties, suitable for character-
izing the elastic properties of some classes of laminated composite plates.

The first comprehensive description of NLPAN was given in [7]. Under NASA Grant
NAG-1-1215, a number of improvements and additions to NLPAN have been developed relative to the
method as described in [7]. The major developments are listed here, along with the sections in this
document (if applicable) in which each is discussed:

1. Transverse pressure loading capability was added to the NLPAN code.

2. Thermal loading capability was added to the NLPAN code. Temperature is assumed to be constant
through the thickness of each plate strip, but may be different from plate strip to plate strip (Sect.
3.2, 3.5).

3. Advanced nonlinear solution strategies were incorporated into the NLPAN code which enable
asynchronous application of the various load types, navigation of limit points, and navigation of
simple or compound solution branch points (Appendix D).

4. Methods for modelling a variety of support conditions at the longitudinal ends of a structure have
been added to NLPAN. The new types of support include rotationally elastic support, eccentric load
application, and clamped end support (Sect. 3.3-3.5).

5. The NLPAN code was modified to decrease both the computer memory usage and the execution
times for a given problem. Memory usage was decreased through the implementation of a data
storage method which sets the dimensions of large data arrays based on the actual needs of a given
problem (Sect 5.2). Execution times were reduced by rewriting key subroutines to run more effi-
ciently.



6. An automated procedure was developed which unites NLPAN and PASCO (in which VIPASA is
embedded), so that buckling-mode generation requests are passed automatically from NLPAN to
PASCO, and material property data and buckling mode information are passed automatically from
PASCO to NLPAN. (Assistance in performing this task is noted in the last paragraph of this sec-
tion.)

7. Troublesome aspects of the second-order displacement fields have been studied in detail, and sug-
gestions for improving the method of computing the fields have been provided. Modifications were
made to the method used by NLPAN in computing these fields (Sect. 4).

8. The theory was developed for performing a transient dynamic analysis in situations where unstable
critical points are encountered. The analysis has not been fully implemented in the NLPAN code,
in part due to time constraints, and in part because the analytical capability is deemed to have little
practical value within the limits of the NLPAN code (Sect. 3.1).

9. Improvements and corrections were made 1o the technique used to control the relative values of the
two generalized in-plane load components (Sect. 2.6, 2.7).

10. A stationary total potential energy formulation was adopted in favor of the original virtual work
formulation [7]. This was necessary in order to give the goveming equations certain properties
necessary to permit use of the advanced nonlinear solution strategies (Sect. 2.8).

This document provides a comprehensive description of the capabilities of, and theory behind, the
NLPAN computer code. Section 2 contains the details of the theory for the baseline method. Section 3
documents the theory behind some of the recent additions to the method. Section 4 contains a discussion
of various issues related to the computation of the second-order displacement fields, and describes certain
modifications to the original method of computing them which have been implemented. Section 5 pre-
sents a brief discussion of some operational considerations for the NLPAN code. Section 6 presents re-
sults from applications of NLPAN which demonstrate program capabilities that are not demonstrated in
other documents. Appendices A-C provide background material for the main text. Appendix D contains
a description of the implementation of advanced nonlinear solution strategies within NLPAN. Appendix
E contains detailled user instructions for the NLPAN computer code. Other work related to NLPAN and
performed under NASA Grant NAG-1-1215 is reported in [16], [23-24].

In all work reported here, access to the buckling analysis of the VIPASA code [12] is obtained
through the PASCO code [13], and therefore this document contains references to both codes. Which
code is referenced is a particular discussion depends on the context; it should be kept in mind that
PASCO is used only for the purpose of obtaining access to the embedded VIPASA analysis.

Much of the work of linking PASCO with NLPAN was performed as a part of a separate research
project by Ms. Christine Perry, graduate assistant to Professor Zafer Gurdal of Virginia Polytechnic In-
stitute and State University. The NASA technical monitor for this project was Dr. James H. Starnes Jr.
of the Aircraft Structures Branch of NASA Langley Research Center.



2. THEORETICAL APPROACH OF NLPAN

2.1 Nonlinear Plate Theory

Consider a rectangular plate strip and an associated local (xy 2) coordinate system, where the x-y
plane lies at the mid-surface of the undisplaced plate. The plate has dimensions L and b in the x- and
y-directions, respectively, as shown in Figure 2. Displacements of the mid-surface are denoted by
{u} =Lulxy) vixy) w(x,y)]r where the three components correspond to the x-, ¥-, and z-directions, re-
spectively. The applied loads acting on the plate strip include force and moment resultants applied at
the plate edges and uniform pressure Q acting in the local z-direction.

2.1.1 Strain-displacement relations. The in-plane strain components (g} = [¢, ¢, y,,]T are restricted
to be small compared to unity, but rotation angles associated with out-of-plane deflections and in-plane
rotations are permitted to take on moderately large amplitudes. The Kirchhoff-Love assumptions are
used to determine the distribution of the in-plane strain components through the thickness of the plate.
The in-plane strains are then given by

(e} = (€°) + z{x"} 2.1.1)

where the mid-surface strains, {e°) = [es €5, ]", and the mid-surface curvatures, =[x x], are
given by

u, + .5(v,f + w,f) w
(€)= Vi 52 +wD) . (K} =- w
2

Uy +V, +W,w

”>x
wy (2.1.2)
y Wazy
The derivation of the strain-displacement relations is given in [7].

An imperfect plate is assumed to be free of internal stress resultants, and have non-zero mid-surface
displacements {u} = {u°} which describe the imperfection shape. Let equation (2.1.2) define the func-
tions {&°} = (e({u}))} and {x} = {[x*(w)). Mid-surface "mechanical” strains {€™} and curvatures {x™)
are defined by

(€7} = (°({uD)} - (D)} (K"} = (')} - ("W} (2.1.3)
These are the strain and curvature measures to which stress resultants are proportional.

2.1.2 Equilibrium equations. Force resultants (forces per unit length) £, f,, and £, are assumed to
act along the edges of the plate in the x-, y-, and z-directions, respectively, and distributed bending
moments M, and M, are assumed to act along the x-normal and y-normal edges, respectively. Force
resultant £, is assumed to account for the Kirchhoff equivalent shear force due to a distributed edge
twisting moment M,,. Special notation is used to represent the load and displacement measures along
the side (y-normal) edges. Each side edge of the strip is given an index number e (e = 1, 2), such that
the edge station y, and the associated y-normal unit-vector component n, are given by

_ [0, -1] fore=1
Dy.. n]= { (5. 1] fore2 (2.1.4)

The generalized di7$placements and generalirzed force resultants along edge number e are denoted as
() =Luvew.y.] and () =[fffm], respectively. The conventions for these parameters are

shown in Figure 2. The edge rotation angle v, is the derivative of w with respect to y.

In addition to the edge loads, a pressure load Q, acting in the z-direction, may be present . The
plate material is assumed to be linearly elastic. The transverse shear strains, Y. and ¥,,, are neglected,
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consistent with the Kirchhoff-Love assumptions, and the transverse normal stress, ©,, is neglected. The
total potential energy « is given by

=[ LTt + i) yaa
A
—jdeA—J—b[)/’\,u+]/§,v+j,‘\;w—nﬁxw.x]|x=o'Ldy @.1.5)
A 0

A A A A
- [fxzue +fyev¢ +foeWe + me‘l"e] I, =1, 2dx
0

where A is the lanform area of the plate stnp, hats denote specified edge-loads, and stress resultants
(N} =[N.N,N, ] and {M} [M. M, M,]" are defined by

N,, M,
o, (1, 2) dz 2.1.6)
__ ny

Equations govemning equilibrium are obtained by requiring stationary total potential energy:
on=0 (2.1.7)

By evaluating equation (2.1.7) and applying Green's Theorem, the field equations governing plate equi-
librium are found to be [7]

Nex + Ny + (Nyit,),, =0 (2.1.8a)
ny'x y'y + (Nxvvx)vx =0 (2.1.8b)
My + 2M o + My + (N + Now, ) + (Ngw,, + Nw, ), + 0 =0 (2.1.8¢c)

On the x-normal edges, where n,=1 1, the expressions for the edge force resultants in terms of plate
stress resultants are found to have the form

fi=nd,
=Ny + Nv,) (2.1.9)
fo= My + 2M,, + Now, + Now, )

Along y-normal edges, the generalized force resultants are given by
e, = 1y(Nyy + Nyu,)

5. =mN,
g =1,2 2.1.10
f = (M, + My + Nyw, o+ Ngw,) € ( )

. =—nM,
where the value n, corresponding to e is given in equation (2.1.4).

2.1.3 Plate constitutive equations. The plate elastic properties are assumed to be those of a bal-
anced, symmetric laminated composite plate, with the additional limitation that the bending/twisting
coupling terms are neglected. The bending/twisting coupling terms become small in significance if each
balanced pair of angle plies in a laminate span a portion of the laminate thickness which is small com-
pared to the thickness of the laminate. The following plate constitutive equations then relate the plate
stress resultants to the mid-surface mechanical strains and curvatures:

(Ny=[Al(e"} , M} =[D]{x"} (2.1.11)

where



Ajnép 0 Dy Dy; 0
[A] = |4,45 0 |, [D] =|D,Dy 0 (2.1.12)
0 0 Ag 0 0 Dg

2.2 Characteristics of Multiple-Plate Configurations

A linked-plate structure has an associated global coordinate system, as shown for a sample config-
uration in Figure 3. The global and local coordinate systems share a common x-axis. The overall width
in the global y-direction is B. A set of "node lines" are defined which are analogous to nodes in a finite
element model. The generalized displacements {u,} along the side edges of a plate strip are rigidly linked
to the generalized displacements {U*)} = [U" V* W»¥*]" of one of the node lines. The latter displace-
ments are defined with respect to the global coordinate directions. The configuration shown in Figure
3 has four node lines, which are labeled in the figure with circled numbers.

The most general orientation of the side-edge of a plate strip relative to the associated node line is
shown in Figure 4(a). There is an angle p between the local and global y-z coordinate directions, and
offset measures e, and e,. Using offsets allows an accurate representation of complex cross sections, as
can be seen in the example shown in Figure 4(b). The generalized displacements {1} can be expressed
in terms of {U*} by applying sequential transformations accounting for rotation, and eccentricity, re-
spectively (Wittrick and Williams [12]):

u,=U"

Ve=V'cosu—W"sinp @2
w,=V"sin L+ W" cos o
\II£=\IJ’I

b, = i‘-¢+ € ‘I’eu'*'ey ;e'x

Ve=Vet & Ve 222)
wezwe_ey\"e

V.=V,

The second transformation above must evaluated after the functional form of the displacements has been
specified.

The generalized force resultants (f,} acting along the side edge of a plate strip can be transformed
to statically equivalent generalized force resultants {f*} = [f;'ﬂ‘f,"m"]r which act at the corresponding
node line and which are defined with respect to the global coordinate directions. The transformation
which relates {f.} and {f"} is obtained by equating the virtual work due to {£.} acting through the virtual
displacements {8u,} with the virtual due to {f7} acting through the virtual displacements {8U/*}. The
vector of generalized force resultants along a node line {F V=[F F: Fr M"]T equals the sum of the
contributions {f*} from all plate edges terminating at the node line. Extemally applied loads acting along
a boundary node line are not included in {F*).

Along the boundaries of the panel, it is assumed that the only non-zero specified loads are the in-
plane normal components. The total potential energy for the entire structure can then be expressed as



P

=Z(L%({N;T{é} + {MJ’{f})M—LdeA -fﬁulno.LdY)

p=1 P .2.3)
—LLFy 1% Inl.nzdx

where p is the index number of a plate strip, P is the total number of plate strips in the structure, and
m and n, are the two designated boundary node-lines. The practical details of specifying the imposed
loads are described in Section 2.8.2.

a

2.3 Loading and Boundary Conditions

2.3.1 Global loads. N is the total x-normal end load divided by the width B. N, is the total
y-normal edge load divided by the length L. These global load measures are defined to be positive for
tension. A non-zero load N,c may only be applied across a continuous, flat skin, because the initial re-
sponse to in-plane loading is assumed to be free of plate bending. The effective changes in the panel
length and width associated with applied loads are denoted Au and Av, respectively, where Av is meas-
ured between two designated boundary node lines. (In cases where the boundary node-lines deform, Av
is a mean value.)

In a nonlinear analysis, the generalized in-plane load parameter A controls either Au or N, de-
pending on whether input parameter CONTRL is specified as ‘D' or 'L', respectively (displacement
control or load control). For configurations which admit biaxial loading, two options are available for
controlling the second load component. Table 1 summarizes these options. In the table, Aw, Av,, N,
and Ny, form a set of self-consistent parameter values corresponding to a unit solution for linear,
unbuckled response. A unit load system is specified in terms of two parameters, one from the pair Au,
and N., and one from the pair Av, and Nye.. The two unspecified parameter values can be computed
as described in Section 2.5. The option selected for control of the generalized in-plane loading (Table
1) determines which two parameters should be specified.

HNlustrations of how the control options of Table 1 are used to simulate a variety of different sce-
narios for generalized in-plane loading are provided in Table 2. The four different cases illustrated in
Table 2 are: A) loading at a constant ratio N,e/N,g, B) control of load component N,; while holding Av
to zero, C) loading at a constant ratio Av/Au, and D) uniaxial loading for configurations which do not
admit biaxial loading. For Case D, Ny is zero in prebuckling response, but a non-zero load N, may arise
in the nonlinear regime if the boundary node-lines are restrained.

Transverse pressure loading is permitted. The loading Q is assumed to be uniform over any given
plate strip, but may be applied selectively to plate strips as necessary to simulate the desired loading.
A load parameter B controls the amplitude of the pressure loading independently of the in-plane loading,
as discussed in Section 2.8.3.

2.3.2 End-support conditions. The effective boundary support condition at the panel ends is deter-
mined by the harmonic form of the buckling mode shapes (obtained from the buckling analysis of
VIPASA) used as global shape functions. The transverse displacements v and w have a sinusoidal de-
pendence on x (see Section 2.6), and thus the buckling modes are actually those of an infinite-length
structure which is supported against transverse displacements at uniform intervals. Axial displacement
u has a cosine dependence on x. When the buckling results are applied to a finite-length structure, the
ends of some panels may both rotate and warp during buckling (and postbuckling). This makes the
concept of a neutral bending axis somewhat ill-defined: nonetheless a generalized neutral axis can be
considered to exist, as determined by the points of zero-axial-displacement (for a buckling mode) at the
longitudinal ends of the panel. The interpretation offered here is that each longitudinal end is loaded by
a generalized knife-edge support which acts along the generalized neutral axis. The effective axial dis-
placement of the panel end is then the axial displacement of the knife-edge. This issue is discussed
further in Section 2.8.2.



The transverse displacements v and w of the buckling eigenfunctions are zero at the ends of the
panel; in addition, the local bending moment M, is uniformly zero at the panel ends, implying a simple
support condition for each plate strip. In general, however, the local edge shear-force resultant N, is
non-zero, and can not be independently controlled.

2.3.3 Boundary conditions along the node-lines. Two of the node lines are designated as boundary
node-lines. The index numbers of these two node lines are denoted », and n, corresponding to the panel
edges which have edge-normal unit vector components n,=— 1 and n,= 1, respectively, with reference
to the global coordinate axes. Along each of the boundary node-lines, four boundary conditions are
specified corresponding to the four degrees of freedom along a node line. In general terms, either a
displacement condition (BCVEC=1) or a load condition (BCVEC=2) can be specified for each of the
degrees of freedom. For the degrees of freedom corresponding to U*, W, and W=, only homogeneous
boundary conditions can be specified (zero generalized displacement or zero generalized load). For the
degree of freedom corresponding to V*, non-homogeneous boundary conditions may be imposed con-
sistent with the limitations given in Table 1.

The choices for boundary conditions are expressed mathematically in Table 3. The term V; re-
presents the node-line displacement associated with the linear response of an imperfection-free structure
to the unit in-plane loads. A third boundary-condition option (BCVEC=3) is available for the degree
of freedom corresponding to V* (Component 2). The symbol F? appearing in the table is the mean value
of the force resultant F} over the length L. With this third boundary condition option, the net edge-
normal load is controlled while the edge is constrained to remain straight with respect to in-plane dis-
placements. The option is useful in modelling symmetry conditions, or in modelling an edge which is
reinforced so as to remain straight.

For the non-boundary node-lines to be in equilibrium, the generalized force-resultants must vanish:

n=12,..,N

(F") = (0} e

(23.1)

2.4 Expansion of the Displacement Functions

Displacements are assumed to have the following general form on each plate strip:
{u} = Mu,_} + q‘-{ui} + q‘qj{u,l} (i,j= 1, 2, vee ) (241)

where summation over repeated indices is implied. Symbol A is the generalized in-plane load parameter,
and {1} =[w v 0] is the displacement solution for linear, unbuckled response to specified unit,
global, in-plane loads. The i* buckling mode shape is {4} = [u. v;w;], and the associated "modal am-
plitude” is ¢. Shape functions {i;} = [u; v;w;] are referred to as the second-order displacement fields.
The imperfection shape is expressed as

W’y =q {u} +q'q w;}  Gj=1,2,..) 2.4.2)
where ¢r is the "modal imperfection amplitude" for an imperfection in the shape of {u}.

The boundary value problems goveming the three families of shape functions are obtained by ex-
panding the equilibrium equations and boundary condition expressions in terms of the expanded forms
of the displacements, grouping terms based on their order in the modal amplitudes, and setting to zero
the imperfections and pressure. The resulting expressions of order 0, 1, and 2 provide the boundary value
problems goveming {u.}, {&}, and {u;}, respectively. Function {4} satisfies the non-homogeneous
in-plane boundary conditions, whereas functions {x} and {u;} satisfy homogeneous in-plane boundary
conditions. Each of the three sets of shape functions is discussed in a following section.



2.5 Prebuckling Solutions

A unit load system for the prebuckling response is prescribed as part of the problem definition
(Section 2.3.1). The unit load system consists of some combination of unit global in-plane loads N
and N,q., and unit global length- and width-change measures Aw, and Av,, consistent with the desired
form of in-plane loading selected from Tables 1-3. The unit loads are distributed so as to produce uni-
form normal displacement of both the longitudinal ends and the side edges. It is assumed that the pre-
buckling response involves only uniform in-plane normal strains in the component plate strips (no plate
bending). Thus, neglecting rigid-body displacement of the plate strips, the prebuckling solution {u}
involves only in-plane displacements:

T
{u}) =Luy v, 0] (2.5.1)

The nature of the loading and elastic properties of the component plate strips are such that neither shear
strains not shear stress resultants are induced, so that

Uiy
{e,) = { Vi } (2.5.2)
0
and

N,
(N =[Ad(e,) = { "(’;L } (2.5.3)

The quantities {€.) and {N.} are uniform over each plate strip, and this unit solution satisfies the equi-
librium equations (2.1.8). The detailed formulae used for computing the prebuckling solution are given
in Appendix A. The formulae are compatible with those used in PASCO [13] for determining the
prebuckling response, but additional equations are included for determining the unit global loads N
and N,q. (required as input to PASCO) corresponding to specified values of A, and/or Av,.

NLPAN, like VIPASA, requires the strains {€.} but not the displacements {u }. For some doubly
connected plate-strip configurations, the method used in PASCO to compute {4} results in a violation
of displacement compatibility between adjoining plate strips. This is because the method only enforces
compatibility of the longitudinal axial strain €, between the various plate strips. The NLPAN code in-
cludes an option to enforce displacement compatibility for cases where stiffener flanges are modelled
as plate strips which are offset from the skin of a panel. In the linear solution, the plate strips are con-
fined to pure in-plane response. Used in a pre-processor mode, NLPAN provides PASCO input param-
eters NX(1), NY(1), and FNY(I) [14] which distribute the in-plane loads among the individual plate
strips so as to satisfy the displacement compatibility condition. When the prebuckling solution is com-
puted with the enforcement of displacement compatibility and zero plate bending, there will in general
be non-zero values for the associated node-line moment resultant contributions M;.

2.6 Buckling Eigensolutions

The buckling equations obtained in the manner described in Section (2.4) are given by

Nx'.’x + nyl.yy + )\leyLu‘yyy = 0 (2.6. la)
ny'.vx + Ny"y + }\'INXLVK’KZ = 0 (2.6. ]b)
Mapx+ 2Myy oy + My + AN, Wi + Ny w3y ) =0 (2.6.1c)

where A, is the i buckling eigenvalue, and functions [N;} = [N Ny Ny ] and (M) = [ M., M, M. ] are
given by

{N)=[A{e) M} =[D](x;} (2.6.2)



where

Uiy Winxx
(g} = Visy {x}=- Wiryy (2.6.3)
U,y + Vix 2wi’xy

The eigenvalues A, are generally negative, corresponding to a compressive end load on the panel.
Equation (2.5.1a) differs from the corresponding equation used in the VIPASA analysis [12], the
latter equation being

Ng’x + nyi'y + ;"iNxLui'xx =0 (264)

The third term of each of the disputed equations is assumed here to be negligible, based on arguments
given in Ref. [7], and so equation (2.6.1a) is replaced by

Ny + Ny =0 2.6.5)

The generalized side-edge force resultants {f) = [f. £. £, m.] of equation (2.1.10) have contributions
{fu} = Lfuf fie m.]" associated with the buckling eigensolutions, given by

")’nyi I Y.

Ny
)= N (2.6.6)
Py (M oz + My + ANy 051y ) I,

- ’Wyily.

These quantities are used to express the node-line boundary conditions (Section 2.3.3) to complete the
boundary-value problem specification for the buckling mode shapes.

The solution of the buckling equations for a linked-plate configuration is performed by the VIPASA
buckling and vibration analysis code [12). The i* eigenfunction has the following assumed form on each
plate strip (where a phase shift in the x-direction has been applied relative to the conventions of VIPASA
to provide that w(0, y) =wq(L,y)=0 ):

u; E) cos mmx/L
{;} = Vi } = N{y) sin mux/L (2.6.7)
w; ¢‘{}’) sin m,ftXIL

where m; is the integer number of buckling half-waves along the length of the panel for the i* buckling
eigensolution. When the buckling equations (2.6.1) are expressed in terms of the displacement forms
given above, the former equations can be reduced to two coupled homogeneous linear second order or-
dinary differential equations in the functions E(y) and n(y), and one homogeneous linear fourth order
ordinary differential equation in the function 04{y).

For specified values of the longitudinal halfwave number m;, the VIPASA program retumns buckling
eigensolutions in the form of an eigenvalue A; and a set of generalized node-line displacement ampli-
tudes. Using this information along with the general forms of the solutions to the goveming ordinary
differential equations, the functions (E(y)} = [£(y) n4y) 0] are obtained in analytic form. Details
of the procedure are described in Ref. [7] Appendix B. (The following error in [7] is noted. Parameter
L in equation (B10) should be given by



LN,
1 X
=D_22 _A‘W"'DZZTJ_DII)
Furthermore, the term L? appearing in the definitions for L and T of equation (B10) refers to the length
squared, and not the parameter L defined in the equation above.) For an infinite-length structure sup-
ported at uniform intervals L along the length, the eigenfunctions satisfy (to the first order) the homo-
geneous form of the boundary conditions along the boundary node-lines which have been selected from
Table 2. However, these boundary conditions may not be satisfied for a finite-length structure, in which
case a correction, described below, is applied to the buckling eigensolution.

If boundary condition Option 3 for Component 2 in Table 3 (BCVEC(2,IB)=3) is chosen, the cor-
responding homogeneous boundary condition is given by V,2=0 and F, =0 where Vr and F,; are the
contributions of the buckling mode to V* and F, of Table 3. The condition F,; =0 is satisfied automat-
ically only if the average value F, is evaluated over an even number of halfwaves (i.e. m; of equation
(2.6.7) is even). If m; is odd, the condition F,,= 0 may be violated, which indicates that a spurious con-
tribution to the global load component N, may be present. Thus, a compensating contribution must be
added. The amplitude of F}; (the first-order contribution to the load F; appearing in Table 2) is deter-
mined from the mean value of the stress resultant N, in the panel skin along one of the two boundary
node-lines:

Fi=nNyl, (2.6.8)
where

N 1

N).‘ | n = T LLNYi I n, dx (2‘6‘9)
and n, designates a boundary node-line location. The global load contributions N,g; is then defined as

NG, =N, |, (2.6.10)

The associated load component in the x-normal direction is denoted N,c;, and this component is zero by
virtue of the harmonic form of N; (N =0 at x=0, L):

P
=L
N, =3 z(fNﬁluod") @.6.11)
p=1 p
=0

A modified buckling eigenfunction {&} is defined, having the form
{u;} = {u;} + B;{up) (2.6.12)

where the shape function {i4} has the same general characteristics as the unit linear unbuckled solution
{u} (see Section 2.5), except that the former corresponds to a unit load system

NyG=Nng , NXG=NIGB=O (2.6.13)

Modified global load contributions, A_/,G.- and N, are defined, corresponding to the modified
eigenfunction {i). In view of equations (2.6.11) and (2.6.13),

N, =0 (2.6.14)
Parameter B; is chosen so that the following homogeneous boundary condition is satisfied:
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Ny, = Ny, + BNyG, (2.6.15)

=0
with the result is that

For modes which have non-zero values B, the eigenvalue 7:..~ associated with {i} will be slightly different
from the original eigenvalue A.. NLPAN computes and prints the values A,.

If the value of BCVEC(2,IB) is 3 for one boundary and 2 for the other (see Table 3), then N,c: may
be non-zero on one boundary and zero on the other. This discrepancy is the result of the nature of
VIPASA buckling mode shapes. In NLPAN, the modified eigenfunction (i} is used only if
BCVEC(2,IB)=3 for IB=1 and IB=2 (both y-normal boundaries).

2.7 Second-Order Displacement Fields

The equations goveming the second-order displacement fields, obtained in the manner described in
Section (2.4), are given by

1
Nyox + Ny + > LNu5).y + Ny i), 1= 0 (2.7.1a)
Noye+ Ny + ANy Vi + 2 LN Djdos + N9 1 = 0 (2.7.1b)
[(Nx‘wpx + N,,w,,,),, + (N,,w,., +N,w, ,.,) (2.7.1¢)

+ (NyWinx + NyyWin) oy + (Ny Win + N w,y),,] 0

where (N;} = [Ny Ny Nos 1" and (M) = [M; M, M., ] are given by

(N} =[Adtey) . (M) =[D]{x;) 2.7.2)
where
Uiy + SVisxViox + WisWisr) Wijnex
{e‘l} = ij'y + S(ul )?uj’y + wi'ywj'y) * { _,} - wij'yy (273)
ulj'y + vq'x+ 5( WixW, py py ]‘X) 2wij'xy

The in-plane load parameter A has been replaced in the above equations by a fixed reference value As,
consistent with the desire to obtain a load-independent set of shape functions {i;}. In Section 4, it is
argued that the load-dependent terms can be eliminated from the above equations, so in the implemen-
tation of NLPAN, A, is set to zero. (The term AN,.u;,, which naturally arises in deriving equation
(2.7.1a) has been omitted, consistent with the deletion of the related term from equation (2.6.1a).)

Equations (2.7.1) involve known eigenfunctions {u«} and {i}, and unknown function {u;}. Let m;
and m; denote the number of buckling halfwaves in the x-direction for eigenfunctions {1} and {}, re-
spectively. Separation of variables can be used to convert the trio of partial differential equations (2.7.1)
into two trios of ordinary differential equations in the variable y, by assuming the following functional
form for {u;} [15]:

11



u;; 2 &aU@) sin mmx/L
{uy} = Vi = z Mo, () cos mmx/L (2.7.4)
W, a=1 0o, () cos mmx/L
where
m+m a=1
m= { ' (2.7.5)
m;— m, a=2

The transverse displacements v; and w; do not satisfy the same boundary conditions as v; and w; at
x=0, L. This issue is discussed in detail in Section 4.

Using the assumed forms for {u;} and {;} along with trigonometric identities, the partial differ-
ential equations (2.7.1) are converted into two uncoupled trios of non-homogeneous ordin differentiz;l
equations, one trio goveming {&;} = [&;ni; ¢:;], the second trio governing {&,;) =B?E_,;,-,- Mo 02 .
Both equation trios have the following general form, where the subscripts o and ij are omitted:

Ci&” + CE+Cn' =F(y) (2.7.6a)
D\&’ +Dm” + Dsn =G(y) (2.7.6b)
E0"" + Ex¢” + E3p = H(y) (2.7.6¢)

where the subscripted C's, D's and E's are constant coefficients, and the functions F(¥), G(y), and H(y)
have a quadratic dependence on the components of functions {E(y)} and {E(y)} and their derivatives.
For general configurations, all three equations are coupled through the boundary conditions along
node-lines where non-coplanar plate strips join. The expressions for the coefficients and nonhomogene-
ous terms in equations (2.7.6) are presented in Section 3.5 of Ref. [7].

The homogeneous form of the boundary conditions discussed in Section 2.3 are applied to the
second-order displacements and the associated generalized node-line force resultants. These boundary
conditions complete the specification of the boundary-value problem goveming the functions {E.(y)}.
Detailed boundary condition expressions are presented in Section 3.5 of Ref. [7]. Because of the com-
plexity of the expressions found in [ Fu(y) Gufy) Ha{y)] of equations (2.7.6), a finite difference analysis
is employed to obtain values of the functions {£;(y)} at a finite number of evenly spaced points across
the y-domain of each plate strip. The finite-difference solution procedure is presented in detail in Ap-
pendix C of Ref. [7].

The functions (u;} satisfy the homogeneous form of the conditions along the boundary node-lines
which have been selected from Table 3. At the ends of the structure (x =0, L), {1;} satisfies the homo-
geneous form of the displacement-control (CONTRL='D' in Table 1) boundary conditions. If load
control (CONTRL='L' in Table 1) is used, modified second-order displacement fields {u;} are computed
which satisfy homogeneous force boundary conditions at the longitudinal ends. The modified function
has the form

(i) = () + Ay({ug} = {w)) 2.1.7

where (.} = [ v, 0] is the unit prebuckling solution discussed earlier, {u}) =[0v, 07 is a unit
unbuckled solution of the same nature as {1} except that it corresponds to a unit global load N,g4 where
the corresponding longitudinal strain €., is held to zero throughout the structure, and A; is a constant
coefficient to be determined. The source and significance of the modifying terms are discussed below.

The second-order displacement fields give rise to associated second-order contributions to the global
loads N.c and Ny, according to the relationships

12



P
Ny, = %Z(J' N,g_jlnody) (2.7.8)

N, 2.7.9)

I
t~|—
S
=z
e
&

where the quantity inside the parentheses in equations (2.7.9) is the value of N,; in the skin at one of the
boundary node-lines. For the case of bi-axial loading (Load Case A, Table 2), the homogeneous form
of the boundary condition which is satisfied is that of Option 2 or 3 for Component 2 in Table 3, so that

Nﬁu =0 (2.7.10)
The modified field (u;} must contribute nothing to either Nc or Ny, so the following conditions are
imposed:
Ng =0
i 2.7.11)
N)G‘J = O
With substitutions, the above two equations take the form
Nﬁij + AU(NIGA - NIG,_) = 0
ANy, = NyG,) =0
The value of N, is selected such that
N)GA = N.YGL (2.7.13)

(2.7.12)

and Aj; is then given by
A= N,G‘J/(N,‘GL -Ng,) 2.7.14)

For load-control cases in which the desired node-line boundary condition given by Option 1 for
Component 2 in Table 3, the condition Vy=0 along the boundary node-lines is automatically satisfied,
but it is still necessary to use the modified function {u;} satisfying

Nig,=0 (2.7.15)

This is accomplished by using the expressions for {u;} and A; given in equations (2.7.7) and (2.7.14),
respectively, but setting to zero the quantities {4a}, Nyca, and Nog,.

2.8 Stationary Total Potential Energy Formulation

2.8.1 Expansion of the strains, curvatures, and stress resultants. The form of the displacements
presented in equation (2.4.1) is restated with the modified functions {} and {u;} of equations (2.6.12)
and (2.7.7), respectively, replacing the functions {w} and {u;}:

(u} =rw) +qili) + qqiliy)  4j=1,2,3,. (28.1)
where

() = {1} +B;{ug}

(i) = () + A} — {u)) 2.8.2)
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The generalized in-plane load parameter A controls either end displacement or end load, consistent with
the selection of parameter CONTRL from Table 1. Simplifications to equations (2.8.2) which arise in
some situations are summarized in Table 4.

The mid-surface strains and curvatures of equation (2.1.3) are expanded by using the expanded form
of the displacements given in equations (2.8.1-2), giving rise to the following forms:

(™) =Aler)} + (g - gD} + (9g— 479D (€y)

+ (@9 — 479 I (€5} + (99/96q — 4797 9500 (€jua) 28.3)

(K"} = (@i= gD ) + (@ig;— g gD (k) (2.8.4)
where

(€} = {&;) + Bi{ep) (2.8.5)

{Eij} = {g;} + A ({g4) - {e,L])

The terms {e.}, {&]). {&;}, {x:}, and {x;} appearing in equations (2.8.3)-(2.8.5) have been presented in
terms of displacement functions in equations (2.5.2), (2.6.3), and (2.7.3). The remaining terms are de-
fined by

Ug,y 0
(€5} = { Vauy } (ea) = { Yary }
0

(2.8.6)
vnxvjbx + W W jhox 5 (vq’kal xt W, q'xwﬂ x)
(&g} = Uipylljoy + WisyWjiy (&) = S Wijrylhyary + WijryWitny)
WisxW, jkry + wvy jhrx 5( tj'xwkl’y +w, q'ywklvx)

Stress resultants {N} and {M} are linearly related to the mid-surface mechanical strains and cur-
vatures, respectively, through equations (2.1.11), and thus have the same expanded forms:

(N} =MNL) + (= )N} +(qg; - q."qj’)(“}
+ (@99~ 9:9; 90 N} + (994941 — 479 969 (Njus}

(M) =(q; = ¢))(M;} +(qiq; — 97g)IM;;) (2.8.8)

2.8.7)

2.8.2 Edge-load contributions to the total potential energy. Global load and displacement quantities
are used to express the contributions of the in-plane loads to the total potential energy. Consider the
in-plane displacements, which have the expanded form

0 Rt B R0 Bivand BEUE Bedpwainies 289

At the longitudinal ends of the structure, u; is identically zero. It is also assumed that non-zero values
of the axial buckling displacements & = i + Bus at the ends of the structure are due to rotation of the
ends about the generalized neutral axis without any associated change in length. The effective change
in panel length, Ay, is then

Au = u‘x:L—ulJ::O
=(A - qg9A)Au,
The mean change in panel width, Av, is given by

14
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L
=AMy, + g{Av; + BAvg) + qqlav;+ AfAvy-Avp]

Av=-L J-L(V"‘—V"‘)dx
0 2.8.11)

where over-bars denote the mean quantities taken over the length of the panel, and V» and V* are the
displacements of the two boundary node-lines in the global y-direction.

The global in-plane load components N,c and N,; are defined by

P
= L
Ng = & Z(J:lex:ody) (2.8.12)
p=1 p
= 1L
Ng = = ‘[)szylnl dx (2.8.13)

where n, is a boundary node-line, and N, is measured in the panel skin (if present) at the boundary
node-line. The expanded form for {N} of equation (2.8.7) is inserted into the above two equations to
obtain the following expanded form for the global in-plane loads:

N Ng . 0
=2 LY +qi+e)
{Nyo} {NyGL} o {N)G.-"'BiNﬁa}

o o NIG+AIJ(NIG —Nzg) 0(‘114)
+ -~ 4’ ij A L +
=49 { Nyg; + AiNyG, = Nyg) } { ) }

The higher order contributions inside the last set of braces are neglected.

(2.8.14)

For the case where load control is used for the in-plane loads (CONTRL='L' in Table 1) the con-
tributions of the in-plane loads to the total potential energy (see equation (2.2.3)) are now expressed in
terms of the global parameters as

~BNAu - rﬁﬁAvdy (2.8.15)
0

Simplifications apply to the expanded forms of the terms appearing in the above expression because load
control is in effect. Load component N becomes

N = ANy, (2.8.16)
so that

B NG Au=(-1*+ gq)AEF (2.8.17)
where

E[ =B Ng Ay (2.8.18)

For Option 2 of Table 1 (CONTRL='L") the load IsAI,G is given by
Nﬁ = AN)'GL (2.8. 19)
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- f: N &v dy =-ADf - gD + BDE) - qq LDk + ADE - DB (2.8.20)

where
Df =LNy, Ay
Dj=LN,g Avy
Dy =LN,; Av, (2.8.21)
Df =L Ny, &,
Djj=LN, Av;

For Option 1 of Table 1 (CONTRL='L'), Av is zero, so that the second term of expression (2.8.15)
contributes nothing.

2.8.3 Expansion of the total potential energy. The total potential energy expression, equation (2.2.3),
is rewritten here, reflecting the use of the global load and displacement parameters to represent the
contributions due to applied edge loads:

P
1 T, c T, ¢
n= 5 (IN}{€°) + (M} {x°))dA - QWdA)
};(Lz J‘; p

(2.8.22)
A A
~BN,;Au — rNﬁAvdy
0

The pressure load Q, acting on plate strip p is proportional to a global pressure load parameter B, such
that

0,= Bé,, (2.8.23)

where Q,, is a specified unit value for Q,. The total potential energy is now evaluated in terms of the
expanded forms of the displacements (equation (2.8.1) ), the mid-surface mechanical strains and curva-
tures (equations (2.8.3,4) ) and the stress resultants (equations (2.8.7,8) ) and the substitutions of
equations (2.8.17) and (2.8.20) are made. The following equation is obtained:

n = Constant
+{9NCF - BCP - 7Tl - 4 4{Th - ¢ alalCl)
+ 40Ty~ BCF + - Tl - g{C}~ 4iafThh
+ 443 ACiz + Cj — g7 Ciy)
+qqa@(MCyy + Cly + % o) } +0(g))

(2.8.24)

where the "Constant” terms are those which do not depend on the modal amplitudes. The coefficients
with over-bars are given by

Ci = (C{ +BCy) - (Df + BD)

Cl=Cl+BC} +BC +BBCE

Ci =[Ci + A¢Cs - chH1 - [Dk + a0k - (DF + EMy]
Ci=Ci+A{C ~CH+B,CE + ABUCR - Ch

C_‘{jk = iljk + Bszfk

Cij = Cif — AuCl - ACh+ AAKCE - 2¢k + by

(2.8.25)
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The unbarred coefficients are "primitive” coefficients. Coefficient Ef is defined in equation (2.8.18),
DL, D5, D}, Df, and D); are defined in equations (2.8.21), the pressure-related coefficients are defined by

Pt ? (2.8.26)

P= P (2.8.27)

P
k_ Tie. Tig..
ci= ([ + mispan)

The primitive coefficient Cj which arises in determining equation (2.8.24) is omitted because it is
identically zero. Contributions to m which are of order five or greater in the modal amplitudes are
henceforth neglected. '

The displacement shape functions and their derivatives are known analytically in the x-direction,
and are known at discreet points across the y-domain of each plate strip. Thus, in evaluating the various
integrals which define the primitive coefficients, analytical integration is performed in the x-direction,
and numerical integration (using Simpson's rule) is performed in the y-direction. Numerical integration
is performed using quantities evaluated at the discrete points in the transverse plane used for computing
the finite-difference solution for the second-order displacement field.

A stationary total potential energy condition is imposed in order to obtain expressions governing
equilibrium:

e
on = 5‘7"( 24 ) (2.828)
=0

Each of the "virtual modal amplitudes,” 8¢; (i=1, 2, ...), appearing in equation (2.8.28), is both arbitrary
and independent, and thus, in order to satisfy the equation, each expression 9n/dg; must independently
be zero. With the selection of a finite basis of M buckling mode shapes for use in the analysis, the
following set of simultaneous algebraic equations is obtained:

A A A A A
ST =G+ BER - 47Cl - qfaiC - gl atar
A A A A A
+q{ACy + BCP + Cy— giCi - afalCy)
N (2.8.29)
+ g (ACiji + Cij — 4 Cijp)
/\L A
+ qjqkq,(lcu,d + Cljkl)
=0 (i=1,2,...M)

where the modified coefficients which appear are given by
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A .
Jjk _
Ci —Cjk

AL _ a7l

e =c, G =2:ij
Ak_ =k C‘J=C‘
C;j=2C; o
C¥ =2C i =G

vy A _ 7

A = Cl=C (2.8.30)
Cije=2C;j + Cj &L — b 4ok
Al _ =l =i gk = ijk Jik
Cijx = Cjjx +2C, po__zo
é‘l"u = 2(61,” + E’kd) "‘Q ‘—Q

4 v J C‘j =_2Cij

A =1 =i i, =k 7
C"ju= ,-jk+2Cj,-k+ E';'u+CU +Z‘jlk

Equations (2.8.29) are nonlinear in the modal amplitudes ¢; (j=1, 2, ..., M) and linear in the two
load parameters A and B. The algebraic equations have been derived for general values of the modal
imperfection amplitudes g¢ (i=1, 2, ..., M), and thus the equations can be used to explore the structural
response in the presence of a variety of imperfection shapes and amplitudes.

2.9 Solution of the Nonlinear Algebraic Equations

2.9.1 Normalization of the variable parameters. Before applying solutions strategies to the set of
nonlinear algebraic equations (2.8.29), the variable parameters are normalized so that they take on values
of order of magnitude unity. The parameters to be normalized include the set of modal amplitudes {g),
and the in-plane and pressure load parameters, A and P, respectively. Each of these is discussed below.

The buckling modes {i} are normalized before their subsequent use in other pants of the NLPAN
analysis, such that the maximum displacement for each mode anywhere in the structure is equal to a
specified reference thickness k.. Thus, the modal amplitudes appearing in equations (2.8.29) are con-
sidered to be normalized.

The in-plane load parameter A is normalized by its critical value associated with primary buckling,
M. Therefore, the normalized in-plane load parameter A is given by

A =M 29.1)

The pressure load parameter B is normalized by a reference value B, so that the normalized pressure
load parameter B is given by

B=B/B,, (2.9.2)

The reference value is selected to be the value of B which produces a deflection response, in a single-
mode NLPAN analysis, having a maximum amplitude in the structure equal to the reference thickness
h. Thus, in a single mode analysis of the perfect structure using mode number r, if B is set to B,,, and
A is set to zero, then the modal response is |g,| = 1. Applying equations (2.8.29), it can be determined
that

1
B,y=|—5(C,+C,, +C,,) (2.9.3)
ef CQ

r

where the coefficients shown are those defined in equations (2.8.30) with the hats omitted, and where
coefficient CZ which would generally appear has been assumed to be negligible compared to coefficient
C?. The mode number r is selected to cormrespond to the mode which, among those in use, has the co-
efficient C? of largest magnitude.

Equations (2.8.29) can now be expressed in terms of the normalized parameters A and [—3 The re-
sulting equations are identical in form to equations (2.8.29) except that A and B replace A and B, and the
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constant cocfficients have been transformed in the obvious manner to account for the definitions of X
and B.

2.9.2 Specification of shape imperfections. After the normalization of the variable parameters is
completed, the general form of the nonlinear algebraic equations is unchanged from the original form
given in equations (2.8.29). To simplify notation, the notation of equations (2.8.29) is used in this sec-
tion, where it is understood that the parameters and coefficients which appear are the normalized ones.
Once the values for the modal imperfection amplitudes, {¢°}, are specified, equations (2.8.29) can be
written as

(€7 +ACF +BCE) +44C5 +ACh + BCD)

o L L S , (2.9.4)
+qquCiix + ACij) + qiqgfCyy + ACiji) =0 (i=1,2, ..., M)
where
C? =~ qCl - q'qrCl* - g/ gt Cl
Co=C;- giCh— glqtct 29.5)

o !
Ciie=Cie— 4/ Ciz
and where the hat symbol (»), appearing over the coefficients in equation (2.8.29), has been dropped here.
Given the shape-imperfection field {#°) the effective modal imperfection amplitudes can be deter-
mined by making use of the orthogonalit  condition for the buckling mode shapes. With the i* buckling

mode shape denoted by {w) =[u v.w:. ], this orthogonality condition is given by (see Appendix B
equation (B10))

_ b, i=j
<tw). utwp>={ g 17 29.6)
where the inner product on the left-hand side of the above equation is given by
P
p=1\"4 P

where p is the plate strip index number, P is the total number of plate strips, A is the planform area of
a plate strip, and Ny and N,. are the in-plane stress resultants corresponding to the unit pre-buckling
solution. Express {u°} as a series in the buckling mode shapes,

M
Wy =) g7 tw) 29.8)
i=1
and evaluate the following inner product with consideration of the orthogonality condition:

M
<(), L(w)>= Y gf<(u), L({u))>
j=1

(2.9.9)
=q’ b, i=12,..,M
where no summation over { is intended. Hence, the modal imperfection amplitudes are given by
q,-"=bi<{u°},z,([u,-})> (i=1,2,... M (2.9.10)
i

The computation of the coefficient b; is performed in the NLPAN program for all modes. The evaluation
of the inner product of equation (2.9.10) is more challenging, since the shape-imperfection field is not
generally known as a continuous function, but is more likely known as a set of values at discreet points,
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or is known along a set of discreet lines on the surface of the structure. No attempt has been made in
NLPAN to automate the computation of g¢ based on a measured imperfection field.

2.9.3 Asynchronous control of in-plane and pressure loads. For the general case of combined in-
plane and pressure loading, the nonlinear algebraic equations governing equilibrium (equations (2.9.4))
contain the two load parameters A and B. A single load parameter, A, is used when applying the non-
linear solution strategies discussed in the next section. This section describes a procedure for relating A
and B to A in a way which permits the modelling of asynchronous application of the two types of
loading.

A series of load ranges is specified in terms of target values for A and B: (0, 0), (A, B.). (Aa, B,
. Over the k* load range, A and B vary linearly with A as A varies from 0 to 1:

A A Ap—Ay
():(" ‘)+A(" * ‘) 0<SAS<1 (2.9.11)
p Be-1 Be—Be-1
Equation (2.9.11) is used to express A and B in equation (2.9.4) in terms of A, and terms are regrouped
to obtain equations with the following form which governing equilibrium over the k* load range:

(Ci+ACH +q(C;+ ACEy + 49{Cje+ ACh)
+q Ciu + ACh) =0  (i=1,2,..,M)

Details of this procedure are given in Appendix D Section D.1, where it is noted that there are some
obvious differences in notation. Equations (D3), (D5), and (D6) of Appendix D correspond to equations
(2.9.4), (2.9.11), and (2.9.12), respectively.

(2.9.12)

2.9.4 Nonlinear solution strategies. The solution of the system of nonlinear algebraic equations
goveming equilibrium (equations (2.9.4) ) can in many cases be performed using Newton-Raphson it-
eration. In some important cases, however, limit-point behavior or solution branching is encountered,
and Newton-Raphson iteration breaks down in the vicinity of associated critical-stability points. Conse-
quently, advanced solutions strategies for the analysis of nonlinear equilibrium behavior have been im-
plemented in NLPAN. The implementation of the strategies is the subject of Appendix D, which was
extracted from [16]. The two basic strategies incorporated are the arc-length control method popularized
by Riks [17] and the equivalence transformation method developed by Thurston [18]. An integrated
procedure is obtained which allows equilibrium solution paths to be followed past limit points, and
through regions of complex solution branching involving modal interaction.

The implementation of the solution strategies has been found to be fairly robust, with a few quali-
fications mentioned here. The solution strategies require the specification of several parameter values
which, for example, control the solution step size, and determine cutoff values used for determining the
proximity and classification of critical stability points. On occasion, the solution strategies are "fooled”
into making an improper diagnosis, and the solution stepping will proceed along an inappropriate sol-
ution path. An adjustment of the input parameter values will generally fix this problem. This type of
difficulty arises when very small modal imperfection amplitudes are used, or when there are very small
effective imperfection values arising due to numerical error. The use of significant modal imperfection
amplitudes (¢° > .01) tends to improve the reliability of the solution procedures.

It has also been found on occasion that a solution path will lead into a web of unstable equilibrium
paths from which the solution strategies are unable to guide the analysis. This behavior occurs in the
highly nonlinear regime (such as deep postbuckling), and is believed to be associated with the use of
an insufficient set of buckling modes as shape functions. If the tangent stiffness matrix becomes singular
for the second eigenvalue (indicating that this troublesome behavior is being encountered), the NLPAN
analysis is terminated, and a waming message is issued.
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3. EXTENSIONS TO THE METHOD OF ANALYSIS

3.1 Dynamic Snap Analysis

The nonlinear analysis of NLPAN is designed to predict the equilibrium response of a structure
which is subjected to a varying load level, and thus there is an assumption made that the time rate of
loading is sufficiently small so that inertial effects are negligible. The methods of Riks [17) and Thurston
[18] have been implemented for following the equilibrium solution paths past limit points and bifurcation
points, and the ability to track unstable equilibrium paths has been achieved (see Appendix D). While
a physical structure will not follow an unstable equilibrium path, following such a path with the analysis
will sometimes reveal a second path or path segment exhibiting stable equilibrium. In this situation, the
physical structure is assumed to exhibit a dynamic snap from the original stable path to the second stable
path, departing the original path at the point where the equilibrium becomes unstable.

In some test cases modelled using NLPAN, the analysis follows an unstable equilibrium path to
secondary limit points or bifurcation points where there is no transition back to solutions of stable
equilibrium. This situation is detected when the second eigenvalue of the tangent stiffness matrix goes
to zero. The process of trying to navigate through such a complex regime of solution paths (in search
of the desired path of stable equilibrium) is difficult to automate, and is also of questionable wisdom
since the solution paths represent structural behavior which will never be encountered. The snap phe-
nomenon is a dynamic event, and by analyzing it as such, the difficulties encountered in following
equilibrium paths are avoided. This reasoning provided the motivation for incorporating a dynamic
analysis capability along with the static analysis capabilities already in place.

In the time since this undertaking was proposed and initiated, a change in thinking has taken place
in the mind of this investigator. The primary mode of response for which the dynamic solution capability
was desired is that of the change in waveform which occurs in structures dominated by local-buckling
behavior (as opposed to global column- or wide-column-type buckling). A study of the literature has
shown that the accurate representation of secondary instability behavior generally requires the use of a
relatively large number of appropriately selected mode shapes as global shape functions (see, for ex-
ample, [19]). While NLPAN employs rigorous criteria for determining critical stability points, it in-
corporates no strategy for selecting the crucial modes required for accuracy, and NLPAN is also limited
1o a relatively small number of included modes. For these reasons, a dynamic analysis capability has
been judged to have relatively little practical value in the NLPAN code. The dynamic analysis capability
detailed in this section has been coded in NLPAN to the extent of computing the generalized mass and
damping coefficients, but the full solution procedure has not been implemented.

The theory for the dynamic snap analysis is presented here. The goal of the dynamic analysis is
to locate the new equilibrium position sought by the structure during the snap, so the accuracy of the
dynamic analysis is not considered to be of extreme importance, and some simplifying assumptions are
thus made. The dynamic analysis is performed at a fixed value of the generalized load parameter A
(defined in Section 2.9.3), namely the value at which the equilibrium path becomes unstable. Motion-
damping forces are incorporated. In the following sections, the equations of motion are first developed,
and then a solution procedure is described.

3.1.1 Equations of motion. Hamilton's principle (as it is presented in [20]) is applied to obtain the
equations of motion. Let T be the kinetic energy of the system, and let 8W be the external virtual work
done on the system, which is broken down as follows:

SW = — 5r + 5W,, (3.1.1)

where Or is the first variation of the total potential energy for the conservative elastic system and the
specified loads (see equation (2.8.28)), and 8W. is the external virtual work of non-conservative forces,
which in this situation are the motion-damping forces. Hamilton's principle can then be stated as
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L
r(57+5u/)dr=0 subject to  (8u}) =0 ar t=1,, 5, (3.1.2)
h

where £, and ¢, are two reference times, #, < 1, . Using equations (3.1.1) and (3.1.2), Hamilton's principle
is re-expressed in its negative form as

I
IZ(SK—GWM-SD dt=0  subjectto {Ou}=0 arr=4,¢ (3.1.3)

h

The kinetic energy is taken to be that associated with motion of the mid-surfaces of the plate strips
in the transverse (y- and z-) directions. This is written as

P
T= ( Lo 42 dA) (3.1.4)

where m is the mass per unit area of a plate strip, p is the index number of a plate strip, P is the total
number of plate strips, and f denotes the derivative of function f with respect to time. Using integration
by parts and imposing the constraints {du} =0 at t=¢ and t=1,, the following expression is obtained:

J' 6Ty =— f zi ( j m(iSy + Wwow) dA) dt (3.1.5)
4 =1 \"A P

In evaluating the right-hand side of the above equation, only the first-order contributions to the dis-
placements v and w (see equation (2.4.1)) are taken into account, to arrive at

I A M M
f (87)=_f (Zaq,.zéjé,.j) dt (3.1.6)
h h \i=1 j=1

where

C.,:

P
y
=1

(I m(vyy; + ww)) dA) 3.1.7)
A P

A non-conservative motion damping force is assumed to act normal to a plate surface in the di-
rection opposite its normal velocity. The force per unit area is assumed to equal the normal velocity,
w, times a damping coefficient, p, which has the units of force per unit area per unit velocity. The
non-conservative virtual work is thus given by

P
W, =— (J' uwswdA) (3.1.8)
p=1"4 p

In evaluating the right-hand side of the above equation, only the first-order contributions to the dis-
placement w are taken into account, to arrive at

W, =- iﬁqii@t‘g (3.1.9)
i=1  j=1

P

where

P
C;= Z( uw,-wjdA) (3.1.10)
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With the generalized load A held constant at the critical value A* (the value at which equilibrium
becomes unstable), 8n can be written as

O = 8q(C;+ 4+ 44, Cij + 499 Cijns) (3.1.11)

where summation over repeated indices is implied, and the coefficients appearing in equation (3.1.11)
are related to the coefficients defined in equations (2.9.12) by

~L . Fo * L &
Ci=(A*C:‘-L+C:,~) Cij= (A Cij+Cjp) 3.1.12)
. e T 1.
Ci=(A"Ci+CD Ciiu= (A" Cjy+ C)

Equations (3.1.6), (3.1.9), and (3.1.11) are now substituted into equation (3.1.3):
2 . .
Sq‘(C,- + qqu + qjq,,C,:,-k + q,qkq,CUu + qqu-i- qJC,J) dt=0 , SUbjCCt to {5u} =0 at t= h. 4 (3.1.13)
h

The time interval [1, ] of equation (3.1.13) is arbitrary, and each of the virtual modal amplitudes
8q: (i=1,2,..) is both arbitrary and independent, so that the equations governing motion at a fixed level
of the generalized load can be reduced to

GCi+4Ci+4Cs+ q@uCit + 4 Cii + Ci=0 (3.1.14)
(i=1,2,...M)

Initial values of the generalized coordinates and their time derivatives, {q),-o and {¢},.., respectively,
must accompany the equations of motion. One approach is to set the former equal to the critical stability
solution {g*) and set the later to

{)im0=¢(0") (3.1.15)

where {¢'} is the eigenvector corresponding to the zero eigenvalue of the tangent stiffness matrix, and
€ is a small non-zero number.

3.1.2 Solution of the equations of motion. The Newmark direct integration procedure, as presented
in Ref. [21], is used to obtain a series of discreet solutions to the initial value problem stated above.
A uniform time increment, At, is used. Index n denotes the current time step number, at which the sol-
ution is known, and n + 1 is the index number of the following time step, at which a solution is sought.
The Newmark procedure uses two somewhat arbitrary parameters, & and B, that determine the exact form
of the time-derivative approximations used. The following parameter values are used here: o = 1/2, and
B = 1/4. This leads to the following time-derivative approximations:

A R AT A (3.1.16)

q.-””=q,-"+Atq.~"+AT‘2(c‘z',-"+<‘i.-"“) (3.1.17)
Equation (3.1.17) is solved for gr+*:

i =aq —a g -ag! - 4 (3.118)
where

a,,=§ a =Ait (3.1.19)

By expressing equation (3.1.14) at time step number n+ 1 and eliminating {¢**'} and {¢**'} using
equations (3.1.16) and (3.1.18), the following equations are obtained:
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C +ab2C +C "+1+Ckq”qu”+C.uq"+qu+lq1"+l-E-

J j i (3.1.20)
(z =1,2,..,M)
where
Ei=-Ci+Cfaq +ad] +§)+ Cilabg] + ) (3.1.21)
and
—Ar
=3 (3.1.22)

Equation (3.1.20) serves as the basis for determining the solution {¢**!} in terms of known quantities.
Once {g*'} is known, the time-derivatives {¢**!} and {¢**'} can be determined by applying equations
(3.1.18) and (3.1.16) in sequence.

The solution {g"*'} can be determined using Newton-Raphson iteration. Let {¢q’} be the r* estimate
for {g**'} in the iterative solution procedure. The residual error vector and the tangent stiffness matrix
for the r* solution, denoted {R'}, and [ K], respectively, are given by

a,C;+ abC;+ Ciq; + Cudlai + Cind Gt — (3.1.23)
and
o 2R
Y og; (3.1.24)

{4}
=a, C + aobzc + C‘J + qk(C,J,‘ + C‘kl) + qkql (Cyld + Clkjl + Clklj)

The improved solution, {g"*!}, is then given by

(' =1¢") + (Aq) (3.1.25)

where the correction, {Ag}, is given by

-1
(Aq)=-[K"] (R} (3.1.26)
Iteration is continued until the correction {Ag} becomes negligible compared to the solution {g"*!}.

The damping coefficient p and the time increment At should be selected based on characteristic
aspects of the dynamic response. Criteria for selecting these two parameters are not considered here.

3.2 Thermal Loading

The capability of modelling thermal loading has been incorporated in NLPAN for the case where
each plate strip is subjected to a uniform temperature. ("Temperature” as used here refers to a change
in temperature relative to a reference value). Each plate strip may have its own temperature value, but
the temperatures in all plate strips are proportional to a single thermal-load parameter. Thermal loading
may be used in conjunction with any option for control of the generalized in-plane loading (see Table
1). Thermal loading is controlled independently of the generalized in-plane loading.

This section is devoted to describing an additional contribution to the expanded form of the dis-
placements (equation (2.4.1) ) necessary for simulating thermal loading. The incorporation of the ther-
mal load contribution into the final problem formulation is described in Section 3.5.
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A unit temperature T is specified for each plate strip, and this value may be different from plate
strip to plate strip. The thermal load parameter ¥ is used in the nonlinear analysis, and the temperature
change experienced by a given plate strip is then T=vT.

When non-zero thermal loading is present, the expanded form of the displacements on each plate
strip has an additional contribution y{u} as shown here:

() =M} + y{ur} + qu;) + qq;{u;) (3.2.1)

where {ur} = [ur v,0]’ is a displacement solution corresponding to the unit temperature system. Sol-
ution {ur} is a linear, unbuckled solution which satisfies the homogeneous in-plane boundary conditions.
As with the unit solution {1} described in Section 2.5, the bending in the component plate strips is
constrained 1o be zero for the solution {u7}.

The expanded form of the mid-surface strains has a new contribution Y{€r} shown in the following
equation:

{e} =AeL} +vler) + (g —g))g) + ... (3.2.2)

Ursy
{er) = { VTuy } (3.2.3)
0

Equation (3.2.2) gives the mid-surface strains relative to the imperfect reference configuration. For a
given plate strip, the in-plane mechanical strains associated with the unit response, {€r}, are given by
the difference between the actual strains and the thermal strains for an unconstrained plate strip:

where

(e]) = (er) - T{a) (3.2.4)

where {a} = [a.a,O]T are the coefficients of thermal expansion for the plate strip. Therefore mid-
surface mechanical strains {€~}, which compensate for both imperfections and thermal loading, contain
the contribution y{er}:

(€™} =A{eL) +YleT) + (- gD g} + ... (3.2.5)

The in-plane stress resultants reflect thermal loading by the presence of a new contribution, included in
the following equation:

(N} =A{NL} +Y(Nr} + (g, — gD (N} + ... (3.2.6)
where

{Nr) =[a](e) G271
and [A] is defined in equation (2.1.12). The formulae for determining the complete unit thermal sol-

ution are developed in detail in Appendix A, Section A.2.

3.3 Rotationally Elastic End Support

Rotationally elastic support of the longitudinal ends is simulated using linear rotational springs lo-
cated at discrete points at the ends of the panel. Spring locations are specified in terms of points on the
cross-section, denoted as yi, where k is the index number of the spring, and y is used here as a gener-
alized transverse in-plane coordinate (ie. y signifies both a particular plate strip and a point along its local
y-axis). Springs of specified strength are then simulated at these points on the cross-section of both
longitudinal ends. A spring with rotational stiffness X, resists ou/dy (in-plane) rotation, and a spring with
rotational stiffness K, resists ow/dx (out-of-plane) rotation.
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Assume that springs of the two types mentioned are present, with stiffnesses, placement, and gen-
eralized decformation given by K&y, ul(n=1,2,.. »N) for the first spring type, and
K.y ,wi(r=1,2,..,R) for the second spring type. The elastic strain energy U associated with these
springs us given by

N Kn R K'
u n o\n\2 w r o2
U=27(uoy_(uly) ) |x=0'L+Z 2 (w,x—(w,l)) IX=O,L (3-3'])

n=1 r=1

where it is assumed that the springs are unloaded at the rest state of the imperfect structure,
{u} = {u°}. Using the expanded form for displacements along with the functional form of the various
shape functions (see equations (2.4.1), (2.6.7), and (2.7.4)), equation (3.3.1) is evaluated and expressed
as

U = Constant + ( % 99— qg}’)(F,-'j‘- +Fj) (3.3.2)

where summation over the repeated indices is implied, the "Constant”" term has no dependence on the
modal amplitudes, and

N
Fy=[1+(-D"-D"Y KIEEN
=t & (3.3.3)
Fi =01+ 00715 ) momy Kol
r=1

where functions £(y) and ¢4y) are the y-dependent portions of the eigenfunction components u(x, y) and
w{x, y), respectively (see equation (2.6.7) ), and f’ denotes differentiation of function f with respect to

Y.

The elastic strain energy of the springs given in equation (3.3.2) is added to the total potential en-
ergy of the structure. To obtain the stationary total potential energy condition governing equilibrium, the
following derivative is required:

U

Sa =G EHED (334)

Comparing equation (3.3.4) with equation (2.8.29), it can be seen that to account for the elastic support
discussed here, each ij* coefficient C; and ¢V of equation (2.8.29) is augmented by the quantity
(Fr+FY).

3.4 Constraint of the End Displacements

The buckling analysis of VIPASA simulates an infinite-length prismatic structure supported at
uniform intervals along the length against transverse buckling displacements. It is the conventional as-
sumption that the buckling eigensolutions will model closely the behavior of a finite-length structure if
the halfwave lengths of the buckling modes are selected to be integer fractions of the length of the panel.
The ends of the finite-length structure are assumed to be simply supported (see Section 2.3.2). In an
effort to extend the method of NLPAN to structures with a greater varicty of end-support conditions, a
method has been developed for imposing constraints on certain generalized displacement components
at the longitudinal ends of the structure. By using appropriately selected sets of buckling modes as shape
functions and applying the generalized displacement constraints, a greater variety of end-support condi-
tions can be simulated.

Two different types of displacement constraints can be imposed at the ends of a panel in order to
simulate three different types of support conditions. With the first type of constraint, the axial dis-
placement u at specified points on the end of a panel is required to be equal to the effective axial dis-
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placement of the panel end. This type of constraint is used to simulate either eccentric application of the
end load (taken with respect to the neutral bending axis of the panel) or clamping of the panel end
against wide-column buckling motion. With the second type of constraint, the slope ow/dx is constrained
to be zero at a set of specified points at the ends of the panel. This type of constraint is used to simulate
clamping of individual plate elements against out-of-plane rotation. The derivation of the constraint
equations for both types of constraints is presented in this section. The incorporation of the constraints
into the general procedure of obtaining equilibrium solutions is described in Section 3.5.

The individual VIPASA buckling modes used as shape functions are not suitable for modelling the
response of a structure having the modified forms of end support mentioned above. However, using a
set of appropriately selected shape functions in conjunction with a set of generalized displacement con-
straints, the desired types of response can be simulated. The point constraints are satisfied exactly, so
in order to avoid having an over-constrained system, the number of point constraints must be fewer than
the number of shape functions affected by the constraints. To simulate a stiffened structure with clamped
ends, it is recommended to constrain the gross rotation of the ends using a couple of strategically placed
axial constraints. The zero-slope constraint is suitable for simulating a simple rectangular plate with
clamped ends. It is unwise to mix the two types of displacement constraints because the number of shape
functions needed to provide meaningful results becomes excessively large.

3.4.1 Constraints on axial displacements. Locations at which the axial displacements are con-
strained are specified in terms of points y; on the cross-section, where k is the index number of the point
on the cross-section, and y is used here as a generalized transverse in-plane coordinate (ie. y signifies
both a particular plate strip and a point along its local y-axis). The displacement u is constrained at these
cross-sectional points, at both longitudinal ends, to be equal to the effective axial displacement of the
respective panel end. In the current implementation, when axial displacement constraints are used it is
required that displacement control of the in-plane loading be used (CONTRL='D' in Table 1). With this
limitation, the effective change in length Aug is given by '

Au,g=AAuy 34.1)

where A is the displacement-control parameter, and Ay is the value of Au corresponding to the linear
response to the unit in-plane load system.

An additional contribution must be added to the general expanded displacement form given in
equation (2.4.1) or equation (2.8.1) for the following reason. The axial component of the primary shape
functions (VIPASA eigenfunctions) denoted u(x, y), has the following functional form on each plate strip
of the structural model:

mTx

u; =ELy) cos 7 (i=1,2,...M) (3.4.2)

where m; is the longitudinal halfwave number of the mode shape. The effective neutral bending axis
of the panel is determined by the zeros of the functions EAy) (one function on each plate strip), since
these zeros identify points on the panel end about which the end rotates during buckling. If the axial
displacement of arbitrary points of the panel ends are to be constrained to zero in such a way as to
simulate a different, eccentric, line of load application, then a corrective displacement contribution must
be included which effectively shifts the zeros of the functions E{y) from their original locations to new,
specified, locations. For cases in which the modified function i = u + Biug is used (see Section 2.6), the
contribution B is included in evaluating the axial displacements at the ends.

The corrective contribution to displacements {u} is taken to be q.{u.), where {u} is the linear
unbuckled response of the panel to the unit in-plane load system (se¢ Section 2.5), and where ¢, is an
initially unknown amplitude parameter. The expanded form of the displacements is now given by

(u} =Mur} +q.{u ) + q:lu) + qq;{u;) (34.3)
where summation over repeated indices is implied, and
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(4} = {u;} + B;{ug) (34.4)

Note that {i;} which appears in equation (2.8.1) is replaced here by {u;}. This is because the restriction
to displacement control (CONTRL='D' in Table 1) enforced here results in the equivalence of {u;) and
{u;} (see Table 4). In anticipation of later developments, parameter g, is represented as a series in the
modal amplitudes, g

q.=Lg; (3.4.5)

where summation over i is implied, and L (i=1, 2, ... » M) are constant coefficients. The displacement
now are written as

() = A} + gl ik} + qig;{uy) (34.6)
where
(&} = () + B;{ug) + Li{uy } (34.7)

The condition at each constrained point is stated as follows: the displacement u, minus the initial
value associated with imperfections u°, minus a second value i/ associated with a stress-producing forced
rotation of the panel ends, is equal to the effective axial displacement of the panel end:

(" - @ - Y =y g _ (1): 23 - K) (3.4.8)

where u* = u(y*), and X is the number of cross-sectional stations at which displacements are constrained.

It is noted that because of the functional form of u;,
wil, _o=ul,_, =0 (3.4.9)

The constraint equations (3.4.8) are evaluated in terms of the form for u of equation (3.4.6) and the
simplification of equation (3.4.9) is applied, providing the following condition:

G- - Dl +Bug +Lup=0 %= b B (3.4.10)

where the parameters ¢f are modal amplitudes used to specify forced rotation of the panel ends. Using
the functional form for & of equation (3.4.2),

4l _o=&»

wl,_, = (-1 EQ)
If m; is odd, then the corresponding values of B; and L, may be non-zero. However if m; is even then the
corresponding value B, is zero (see Section 2.6), and it is stated in anticipation that the corresponding

value L, is also zero. Equation (3.4.10) evaluated at x =0 is subtracted from equation (3.4.10) evaluated
at x =L, and the substitutions of equation (3.4.11) are used, to obtain

(3.4.11)

z (= q — qD(=2E+ B; Aug + L, Au) = 0 k=1,2,...K) (3.4.12)
=0y, 0 ..
where & = £(*), parameters oy, 0,, ... are the index numbers of modes for which m; is odd, and Aw, and
Aug are the contributions to Au (the change in panel length) due to u and u, respectively.

The coefficients L, are determined by arbitrarily requiring that the first equation (k = 1) of equations
(3.4.12) be satisfied identically for any value of the modal amplitudes ¢.. The quantity inside the right
set of parenthesis is set to zero for each value i, and parameters L; are determined to be

28



2% Aug k=1)

YA T Ay (i=0y,0y..) (3.4.13)

If K is greater than one, then the remaining K — 1 non-trivial constraint equations are obtained by sub-
stituting L, of equation (3.4.13) into equation (3.4.12). The final form obtained is

@- ¢ -qDE;=0 *k=2,3,...K) (3.4.14)

where

k . _
E,= {(-25,- +BiAug+ L Aw))  (i=0y,0,,..) 3.4.15)

0 (i=e6..)
where e, e, ... are the index numbers of modes for which m is even.

Next, equation (3.4.10) evaluated at x =0 is added to equation (3.4.10) evaluated at x=L, and the
substitutions of equation (3.4.11) are used. Noting that B; and L, are both zero for i = é, é,, ..., the result
is

Y @-a'-gheEh=0 *k=1,2,..,K) (3.4.16)

i=ep, €.

These equations are distinct from equations (3.4.14), but can be expressed in the same form:

(gi—4’ - gHE;=0 k=1,2,..,K) (3.4.17)
where
3 2tk (i=e,e,..)
Ey= { o Gi=or 00 ) (3.4.18)

3.4.2 Constraints on out-of-plane rotation. The locations at which out-of-plane rotation is con-
strained are specified in terms of points y, on the cross-section, where k is the index number of the point
and y is used here as a generalized transverse in-plane coordinate (ie. y signifies both a particular plate
strip and a point along its local y-axis). The rotation ow/dx (referred to a local plate-strip coordinate
system) is constrained at these points on both longitudinal ends of the cross-section. At each end of the
panel, K constraint conditions are imposed:

waz ot BB B G419

where w/! is the slope at the cross-sectional station ¥*, w,¢ corresponds to the imperfection shape of the
panel, and w{ corresponds to a forced rotation of the ends. When equation (3.4.19) is evaluated in terms

of the expanded form for w and the functional forms for w; and wj, the constraint equations at x = 0 have
the form

(@-q’-ghmof=0  *k=1,2,...K) (3.4.20)
and the constraint equations at x = L have the form
@G=-4-ah(-D"mof=0  (*k=1,2,...K (34.21)

where summation over i is implied, m; is the halfwave number of the i* buckling mode shape, ¢4y) is
the y-dependent function corresponding to w{x, y) (see Section 2.6), ¢f = d{y*), and {¢' } is a set of model
amplitudes used to specify a forced rotation of the panel ends. There are 2K constraint equations; how-
ever if halfwave numbers m; are either all even or all odd, then the two sets of constraint equations
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(3.4.20) and (3.4.21) are equivalent, and there are only K independent constraint conditions. Each of the
K or 2K constraint equations can be written in the form

@~ 4’ - ¢DEx (3.4.22)
where

Ey=mo! *k=1,2,...K (3.4.23)
and, if both odd and even values of m, are present,

Ey=(-D"m#f  (k=K+1,K+2,..,2K) (3.4.24)

3.5 Solution Procedure with Thermal Loading and Displacement Constraints

This section describes modifications to the NLPAN problem formulation and solution procedures
necessary to accommodate thermal loading and/or displacement constraints. The nature of the thermal
loading, and the associated additions to the assumed form of the displacements, are discussed in Section
3.2. The nature of the displacement constraints, the displacement-constraint equations, and the associ-
ated modifications to the assumed form of the displacements, are all discussed in Section 3.4. In this
section, the general form of the displacements which accounts for the new features is used to form a
new total potential energy expression, and the constraint equations are incorporated by using the
Lagrange multiplier method. The adaptation of the advanced solution strategies to algebraic equations
containing Lagrange multipliers is also discussed.

3.5.1 Energy functional with Lagrange multipliers. When both thermal loading and axial-
displacement constraints are imposed, the displacements have the expanded form

(u} =M} +v{ur} + g} +qgifu;}  ij=1,2,3,.. (3.5.1)

where summation over repeated indices is implied, y is the thermal-load control parameter, {ur} is the
unit thermal response discussed in Section 3.2, and

{lz.'] = {1} + Bi{ug} + Li{u}

(i) = () + Ay{ang)} = ()
where the form of {u;} is explained in Section 2.7, coefficient B (i=1,2,..)is defined in Section 2.6,
and the presence of coefficient Li (i=1,2,...) implies that constraint equations may accompany the

problem statement. As stated in Section 3.4, axial displacement constraints are permitted only when
displacement control is used (CONTRL='D' in Table 1), and this has the implication that

Li=0 (=1,2,..) o A;=0 (ij=12..) (35.3)

352

The expansion of the mid-surface mechanical strains given in equation (2.8.3) is modified here to
include one new term and one altered term:

(€7} =MeL) +Y{eT) + (@~ gD E) +(qg— 4PgDEG) + .. (3.5.4)
where v is the thermal-load control parameter, {€7} is defined in equation (3.2.4), and
(&} = (&} + Bi{eg) + Li{e, ) (3.5.5)
The expansion of the in-plane stress resultants now has the form
(N} =N} + YN+ (= )N + Qg = 47gDIN,) + . (3.5.6)
where {Nr] is defined in equation (3.2.7), and
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(N;} = {N;} + B;{Np} + L{{N, } (3.5.7)

The total potential energy n of equation (2.8.22) is evaluated, using the expressions for {e} and
{N} of equations (3.5.4) and (3.5.6) in place of the original expressions given in equations (2.8.3) and
(2.8.7), respectively. The resulting expression for & is written as

n = Constant
+ AT} +4C] = BCL - 47T1 - 4/ 4¢Th - 402097 Cl)
+ 440G +YC; — BCF + - Tl - {Th — 4ia?ThhH
+4qaACij +YCJ + Th— g/ Chy)
+ ‘mﬂk‘h(lcil}u + YC.',T'/:J + Eiljlc + % (:fl) + O(g)

(35.8)

where the "Constant” terms are those which do not depend on the modal amplitudes. The coefficients
appearing in the above equation follow the definitions given in equations (2.8.25) except as noted here.
Four coefficients have additional contributions, given by

ACF =LCE

AC] = LG} + LiCY + LLCE + (LB, + BL)C}
AC;=LCj

AC_’L-k = Llcilfk

3.5.9)

and two coefficients, not present in equation (2.8.24), are given by
Cl=cl+Bch+LcT

Cj=Cj+A(Cl-C])

(3.5.10)

Seven primitive coefficients (CZ, Cs, C4, CT, C}, Ci, Cl) appear in the above equations, and these are
defined as illustrated here by two examples:

P
cl= Z(J;{NT}’[sL}dA)
p=1 P
T & T
c! =Z(L({NT} {e.-,-})dA)
p=1 P

where the notation used is the same as in Section 2.8.3.

(3.5.11)

The constraint equations for the different types of generalized displacement constraints all have the
same form, visible in equations (3.4.14), (3.4.17), (3.4.22). 1t is assumed that there are a total of N
constraint equations, written collectively as

@G- —q)E;=0 (n=1,2,..,N) (3.5.12)

where summation over j is implied. The constraint equations are incorporated into the problem statement
using the Lagrange multiplier method. A new functional I is formed:

M=n+T,(q-q - qj/)Enj (3.5.13)

where I', (n=1,2, ..., N) are the Lagrange multipliers, and where summation over repeated indices is
implied. The equilibrium condition for the constrained system is obtained by setting the first variation
of the new functional to zero:
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=9 5, 4 O
ol = o, + ar. or,
=0

Because each value 3¢; or 6T, is both independent and arbitrary, equation (3.5.14) gives rise to the fol-
lowing (M + N) independent conditions:

(3.5.14)

3—2 =l +YCT +BCE - gPCi - g2gfClt - gPalar Ci¥y
+ q,aé,.ﬁ + (f‘,f + B(/,\‘,-jg + CA',-j - q,ch‘,-f- - q,‘:q,"(:“,-',‘-’) +T,F,
+ qﬂk()"égk +v 6;,Tk + 6.‘,'& -q 6{,/:) G319
+ qﬂk‘]l(;"éi?ld +Y égu + 6;','&1)
=0 (i=1,2,..,M
aa_lq =4=q - gy (3.5.16)
=0 n=12,..,.N)
where the coefficients of equation (3.5.15) are all defined in equation (2.8.30) except for the following:
Fp=E,
cr=cr
Cj=2C5 (3.5.17)

AT T T
C‘I = C‘Jk + 2C:nk

A
Ci,T'u = Z(E:,r'u + C—T’Tkﬂ)
Equations (3.5.15) and (3.5.16) govem the equilibrium solutions which are sought. There are now

three generalized load-control parameters, A, v, and B. The modal amplitudes ¢; and Lagrange multipliers
T, constitute (M + N) variable parameters to be determined in obtaining each equilibrium solution.

3.5.2 Modifications to the solution strategies. The solution procedures described in Section 2.9 and
Appendix D require some additions and modifications to accommodate the additions to, and modifica-
tions of, the nonlinear algebraic equations discussed in the preceding section. First, the new parameters
appearing in equations (3.5.15-16) must be normalized.

The thermal load parameter y is normalized by a reference value Y., so that the normalized load
parameter ¥ is given by

Y=Y (3.5.18)

The value Y., is selected to be the maximum-amplitude target value for y used in specifying the load
range or ranges over which a nonlinear analysis is to be performed.

The Lagrange multipliers T, are normalized by reference values R, so that the normalized Lagrange
multipliers T', are given by

T,=TJR, (n=12,..,N) (3.5.19)

The values R, are selected as follows. For each value of n the value of i is identified which corresponds
to the largest-amplitude coefficient F,, for all i, where F,, appears in equation (3.5.15). For the selected
value of /, the following expression is set to zero:

C",'+ F,,Fi,, =O (3520)
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where no summation is implied. Equation (3.5.19) is solved for I", and that expression is used in equation
(3.5.20) to get

Ci+ TR F;=0 (3.5.21)
Parameter R, is determined by setting T, to unity in equation (3.5.21), providing
Ry=-Ci/F, (3.5.22)

The normalized parameters ¥ and T, are incorporated using the same approach as was described in
Section 2.9.1 for incorporating the normalized parameters A and B. The nonlinear algebraic equations
(3.5.15) are expressed in terms of the normalized parameters, and the resulting equations are identical
in form to equations (3.5.15), but with normalized parameters  and T, replacing y and T,, respectively,
and with the constant coefficients having been transformed in the obvious manner to account for the
definition of ¥ and T.,. Without assigning new notation, it is assumed from here on that the parameters
and coefficients which appear are the normalized ones.

Following the general procedures described in Sections 2.9.2 and 2.9.3, the form of the nonlinear
algebraic equations is simplified after specification of the modal imperfection amplitudes {¢°} and col-
lapsing of the load parameters A, ¥, and B into a single load parameter A. Equations (3.5.15) and (3.5.16)
are converted to obtain equations of the following form:

(C;+ACH + g(C;+ ACb + 4 (Cyjp + AC,-';,,)

L . (3.5.23)
+949(Ciju + ACjj)) + T, F;, =0 (i=1,2,..., M)
E,+qE,=0 (n=1,2,..,N) (3.5.24)

where the coefficients of equation (3.5.23) are analogous to those of equation (2.9.12) (with the tilde
dropped from the notation), and where

E,=-(q +q)E, (3.5.25)

where summation over j is implied, and it is assumed that the modal amplitudes {¢'} which determine
the forced end rotation have been specified.

Equations (3.5.23) differ in form from equations (2.9.12) by the presence of the terms with T, and
by the accompanying constraint conditions of equations (3.5.24). Equations (3.5.23) and (3.5.24) can
be converted into a set of M+N equations with the same form as equations (2.9.12):

(Ci+ AC)) + q{Cyj+ ACE) + qgCyy + ACL

L . (3.5.26)
+qjqkql(cljkl+ACykl)=0 (l= 1,2, .. ,M+N)
where repeated indices are summed over the range 1 through M + N, and
=T, , i=M+n (n=1,2,..,N) (3.5.27)

The only non-zero coefficients in equations (3.5.26) with subscript values i, j, k, or /, greater than M, are
given by

. i=1,2,..,
Cy=Fn ., j=M+n 8. 5 % (3.5.28a)
C,=E,, i=M+n (n=1,2,..,N) (3.5.28)
Cy=Ey. i=M+n (Z12oi) (3.5.28¢)
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Many aspects of the solution strategies discussed in Section 2.9.4 and Appendix D can be applied
directly to equations (3.5.26). However while there are M + N variable parameters (excluding the load
parameter) in the M + N equations, there are only M — N independent geometric variables (modal am-
plitudes) because of the N constraint conditions of equations (3.5.24). Thus, the eigenvalue problems
which are solved as a part of the solution strategies described in Appendix D have only M - N
eigensolutions, and so some modifications must be made to the solution strategies.

Appendix D Section D.3 concems the control of solution branching using Thurston's method.
Equations which appear in that section are modified here to accommodate the use of Lagrange multi-
pliers. The M + N equations represented by equations (3.5.23) and (3.5.24) are written symbolically as

@ T, M)=0 (i=12,..,M+N) (3.5.29)

where the over-bars signify vectors. Let (7, T, A) be a starting solution (a known exact or approximate
solution to equation (3.5.29)) and let (7 + &, T+ {, A + 8) be a solution which is sought near the starting
solution, where the increments to the parameters are small compared to the parameter values. The new
solution satisfies

S@+ET+LA+8)=0 (i=1,2,...M+N) (3.5.30)

The first M of equations (3.5.30) are expressed in the expanded notation of equation (3.5.23), and terms
are regrouped based on their order in the incremental parameters:

(Di+ 8D}) + EDy+ 8DJ) + £ Dy + 8D + EE LDy + 5C) (3:5.31)
+0,F,=0  (i=1,2,..,M)

where
D;=f(g,T, 1) (3.5.32)

and the other coefficients are defined in Appendix D. The last N of equations (3.5.30) are expressed in
the notation of equation (3.5.24):

(E,+qE,)+EE, =0  (n=1,2,..,N) (3.5.33)

Equations (3.5.24) are linear in the modal amplitudes, and hence these equations are always satisfied
exactly, even in an iterative solution procedure. Thus the quantity in the parentheses in equation (3.5.33)
is known to be zero, and the equation reduces to

EE;=0  (n=1,2,..,N) (3.5.34)

The eigenvalue problem for the constrained system here, corresponding to Appendix D equation

(D27), is

([%Il%] + ak[%a%%]) { %:_ } - {%} *k=1,2,..) (3.5.35)

where 8, are cigenvalues, and [6*|1:]” are eigenvectors with components corresponding to the parame-
ters [E,ICJT. A series of operations is used in NLPAN to reduce equations (3.5.35) to a system of
M — N equations which can be solved to obtain M — N eigenvalues and eigenvectors. The details of this
process are tedious, but straightforward. The first step is to reorder the components of (@} so that the
first N columns of the reordered matrix [£] and the first N rows of the reordered matrix [F] form
non-singular square matrices. The last N rows of equation (3.5.35) are then used to express N compo-
nents of {6} in terms of the remaining M — N components. Similarly, the N components of {t*} can be
expressed in terms of the M — N remaining components of {6*} and the eigenvalue §,. A condensed
eigenvalue problem of dimension M — N is thus obtained, and this is solved using conventional methods.
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In Appendix D equation (D29), the incremental solution vector {€} is expressed as a series in the
eigenvectors {6*}. The analogous equation for the modified case here is given by

g <[ ¢
(£}-504)

The other aspects of the solution strategy described in Appendix D Section D.3 are not affected by the
presence of Lagrange multipliers, provided that: i) the M + N equations of the form of equation (3.5.26)
are used as the equilibrium equations (the Lagrange multipliers T, are treated the same as modal am-
plitudes), and ii) it is realized that there are only M - N eigensolutions. For example, Appendix D
equation (D25) would be of dimension M+ N whereas Appendix D equation (D31) would be of di-
mension M — N,

Appendix D Section D.2 concemns the application of the arc-length-control solution strategy. Once
again, the solution strategy can be used for the most part without modification, assuming that equation
(3.5.26) serves as the starting set of equations. However special treatment is required is in solving the
eigenvalue problem of Appendix D equation (D20). The corresponding equation for cases with Lagrange
multipliers is

([%Il%] - mk[%+%]) { ;;i } = {%} k=1,2,..) (3.5.37)

where @, are eigenvalues, [¢*| Q*]" are eigenvectors corresponding to the variables [£|{]’, and [7] is
the identity matrix. Equation (3.5.37) has the same general form as equation (3.5.35), and thus the
method used to reduce equation (3.5.35) 10 a problem of dimension M — N is used again to reduce
equation (3.5.37) to a problem of dimension M — N.
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4. IMPROVEMENTS IN THE COMPUTATION OF THE SECOND-ORDER DISPLACEMENT
FIELDS

In this section, consideration is given to altenate methods for computing the second-order dis-
placement fields. This is done in an attempt to rectify some dilemmas and discrepancies which arise
when the method described in Section 2.7 is used without modification. First, the troublesome aspects
of the second-order fields are identified. Next, the beneficial effects of requiring the second-order fields
to be orthogonal to the buckling mode shapes are discussed. Several possibilities for new or modified
approaches to computing the second-order displacement fields are outlined. Finally, the approach used
in the current implementation of NLPAN is described.

4.1. Problems with the Second-Order Displacement Fields

4.4.1 Boundary conditions at the longitudinal ends. The buckling modes {) are the primary shape
functions in the NLPAN analysis, and their harmonic dependence on x determines the effective boundary
support condition at the longitudinal ends of the structure. The functional form of {1} of equation (2.6.7)
suggests that boundary support is in place which guarantees that

v=w=(0 atx=0,L “.1.1)

The linear prebuckling solution {4} does not rigorously satisfy equations (4.1.1), because of in-plane
Poisson expansion, and the coupling of in-plane and out-of-plane displacements between adjoining plate
strips. In addition, and of primary concem in the current discussion, the two contributions to both v; and
w;; of the second-order fields have a cosine dependence on x (see equation (2.7.4)), and thus it is not
guaranteed that v; and w; are zero at x=0, L. Indeed, it was observed in Ref [7] that if left unchecked,
some contributions to selected functions {u;} grossly violate the boundary conditions at the longitudinal
ends.

The functional form of {u;} was selected to accommodate the non-homogeneous terms in the gov-
emning differential equations (equations (2.7.1) ) so as to permit the equations to be expressed in terms
of separated variables. Boundary conditions at x =0, L were not considered in selecting the functional
form of u;, but justification for the functional form is found by considering the behavior of simple rec-
tangular plates.

In the postbuckling analysis of simple rectangular plates using von Karman plate theory, where
w(x, y) is represented, as it is here, as a series of terms of the form o) sin(m;x/L), the functional forms
for ux, y) and vi(x, y) of equation (2.7.4) are the appropriate forms to allow the in-plane equilibrium
equations to be satisfied exactly for any arbitrary set of terms in the series for w. (The in-plane boundary
conditions at x =0, L corresponding to u; and v; are u,,=0 and N, =0.) The in-plane displacement terms
u; and v; are essential for obtaining accurate solutions for a plate undergoing significant postbuckling
deflections.

For a linked-plate configuration, the coupling of the transverse displacement components v and w
between adjoining, non-coplanar plate strips suggests that component w; should have the same harmonic
dependence on x as component v;. It is concluded that with the use here of global functions, the boundary
condition of equation (4.1.1) is too restrictive. It seems more appropriate to require that at the longi-
tudinal ends of each plate strip the out-of-plane displacements must be small, and are permissible only
to the extent that in-plane displacements must be accommodated and displacement compatibility at the
node-lines must be enforced. The boundary value problem described in Section (2.7) requires inter-
vention if the qualitative boundary condition just described is to be enforced.

4.1.2. Load-dependence of the second-order fields. The differential equations (2.7.1) which govern
{#;} were are obtained from an expansion of the plate equilibrium equations in terms of the modal
amplitudes. The appearance of the load parameter A in equation (2.7.1) suggests that the functions {u;}
are load-dependent; this is an undesirable quality from the standpoint of computational economy. A
second complication related to the appearance of A in the differential equations is the existence of sin-
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gular values of A for which the amplitude of {u;} becomes unbounded. Understanding the reason for
these singularities gives insight as to how {«;} might be computed differently, therefore the cause of the
singularities is discussed here.

When the buckling equations (equations (2.6.4), (2.6.1b-c) ) are expressed in terms of separated
variables, the following homogeneous ordinary differential equations goveming the function {&;) are

obtained:
CiE” + CE+ G/ 0 0
D&/ +Dn/” + Dyn; + A Dim; = { 0 } 4.1.2)
Ed" + Exp” + Exb; EN6 + E3; 0

where primes denote differentiation with respect to y, and the sub- and super-scripted coefficients C,
D, and E depend on the halfwave number m. Similarly, when equations (2.7.1) are expressed in terms
of separated variables, the following nonhomogeneous ordinary differential equations governing the
functions {&.;} are obtained:

- C1&o” — G+ CiNay/ 0 F({&}, (g
—Difo/ + D" +DMy; 3 +A 2 Dimg = G({E}, (ED) 4.1.3)
Edoi” + Epai” + Esbo; E} (I E} Ouij HA{E), (&)

where the sub- and super-scripted coefficients C, D, and E are the same as those in equations (4.1.2),
except that they depend the halfwave number /1 of equation (2.7.5) instead of m. It can be seen by
comparing equations (4.1.2) and (4.1.3) that if A in equation (4.1.3) is selected to be an eigenvalue for
a buckling mode with the halfwave number 7, then the left-hand side of equation (4.1.3) (when ex-
pressed in terms of unknown coefficients for the functions (.;}) will be singular. (This fact was pointed
out to the author by Prof. S. Sridharan of Washington University at St. Louis.) Thus for some ranges
of values of A, the functions {u;} take on large amplitudes and have the approximate shape of buckling
modes, except that the phase of v; and w; causes the maximum displacement amplitudes to be at
x=0, L, resulting in a gross violation of boundary condition. In these situations the second-order
functions {wu;} are reflecting instability-related response which is already represented by first-order
functions {u}.

4.2. Implications of Imposing Orthogonality Between {u;} and {u}

In the literature of the classical perturbation approach to the analysis of structural stability, it is
stated that second- (and higher-) order displacement fields should be orthogonal to the buckling modes
(Ref. [22]), although it is not necessarily clear how this orthogonality is to be enforced. In this section,
the implications of requiring orthogonality between the functions {i]} and {u;} are studied. Evidence is
offered that the problems discussed in the preceding section are alleviated by enforcement of this con-
dition.

Abbreviated notation is introduced here. Define operators L and N such that L(N) and N(N,u) are
given by

LV Newx + Ny
L= 3 LN § = & Ny, +N,, (4.2.1)
Ly(M) My +2M, 0 + M,
NN = Ny(N,,v) = (A “4.2.2)
N3(N.w) (Nywor + Now, ), + (Ngw, + Nyw,.),y
Define the inner products <u, L{N)> and <u, N(N,u)> by
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P
U LN>=Y {j[ulq(N) + vL(N) + wle(M)]dA}
p=1 A P

P 4.2.3)
<u, NNw>=y {J[u Ny(Nyis) + v Ny(Noy) + w N3 (N.w) JdA }
p=1 4 P
Using the abbreviated notation, the plate equilibrium equations are given by
LIN) + NINuw)=0 (4.2.4)
the buckling equations are given by
L(N) +ANNL, u)=0 (4.2.5)
and the equations goveming {u;} (equations 2.7.1) are written as
L(N)+ < NQNj ) + -1 NON, ) + AN GV, ) =0 (4.2.6)

where it is noted that in equations (2.6.4) and (2.7.1), it is assumed that N,(Ny, u)=0.

The orthonormality relationship satisfied by the buckling modes is derived in Appendix B and given
in equation (B10). It is written here as

<uj, N(NL, u")> =— 517(1,- (427)

where §; is the Kroniker delta functions, and a; is an arbitrary normalizing constant. The condition ex-
pressing orthogonality between the second-order displacement fields and the buckling modes is given
in Appendix B equations (B12) and (B14) in two alternate forms:

<uy, N(NL, u,-j)> =0 (4280)
<uty, NN, u)>=0 (4.2.8b)

Enforcement of the above orthogonality conditions would cause the second-order fields to have
components w; (in the local reference systems) which are closely in accordance with the goal of having
minimal transverse displacements at the panel ends. This is because the large transverse displacements
which characterize the buckling modes would be suppressed in the second-order fields by the
orthogonality condition. The second-order fields would thus be truly second-order in character, absent
of the displacement contributions already available in the family of buckling modes.

It is also contended here that enforcement of the orthogonality condition would cause the second-
order fields to be independent of the load parameter. The term A; N(N,, u;) of equation (4.2.5) is the term
which drives the buckling instabilities associated with the mode shape {w}. Function {4;} is now
orthogonal to all the buckling modes and thus should not represent an instability-driven displacement
field; therefore it would seem reasonable that the term AN(N., u;) of equation (4.2.6) should have little
effect on the solution for {u;).

A more theoretical basis for this argument is established by considering terms in the stationary total
potential energy expression. The total potential energy of the structure is expressed in equation (2.8.24)
as a power series in terms of the modal amplitudes, which can be expressed symbolically as

R=Mo+M + M+ Ty + Ty + ... 4.2.9
The equilibrium condition of equation (2.8.28) can similarly be written as

5n=81[1+6102+8n3+8n4+ e

-0 (4.2.10)
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It is noted that while the boundary-value problems goveming the functions {w ), {&), and {w;} were
determined by expanding the plate equilibrium equations and the associated boundary conditions, iden-
tical boundary-value problem statements for the first two functions can be obtained by evaluating
&1, =0 and 8m, =0, respectively. The relationship between 8n, and the boundary-value problem used in
Section 2.7 to obtain {;} is more complex.

Appendix C contains an evaluation of dr, in which the following form is obtained (equation (C7)):

om; = 8q.9i: { - <u, [LN + % NN, u) + % N(N;, u) + AN(NL, u) 1>
- 2(1 - )\.k)<u‘:,', N(NL, uk)> ]

4.2.11)

In this equation, the weighted term inside the first inner product is the term set to zero in the differential
equations (4.2.6), and the second inner product is the quantity which is set to zero in the orthogonality
condition of equation (4.2.8b). If equations (4.2.8a-b) are enforced, equation (11) becomes

813 = 80,94 { = <ut, LN + 5 NNy, ) + N 1> } 4.2.12)

The load-dependent term AN(N, uz) has been eliminated in the expression for 8m,. This is offered as
further evidence that the second-order displacement fields are load-independent when orthogonality is
enforced between the functions {u;} and {u).

4.3 Computation of {u;} with Orthogonality Imposed
With the load-dependent term omitted, the differential equations (4.2.6) are written as
L(N;) + = N, 1) + -+ NV, ) =0 @.3.1)

A consequence of enforcing the orthogonality condition of equation (4.2.8) is that equation (4.3.1) can
not, in general, be solved exactly over the domain of the structure. It seems appropriate to devise a
method which minimizes the error of equation (4.3.1). Three possible approaches to computing {u;} are
discussed in the following, then the approach currently used in NLPAN is described.

4.3.1 Least-squares approach. One solution approach is to use the Lagrange multiplier method to
satisfy the orthogonality-constraint equations while minimizing the error of the field equations in the
least-squares sense. Equation (4.3.1) represents three equations. Define three residual error functions
associated with the ordinary differential equations governing {&.;} (equations (4.1.3)), where the load-
dependent term is now omitted:

R\ =-C\&" - CE + G’ - F(y)
R'3)=-D\&’ + D" + Dyn — G(y) 4.32)
R™(y) = E\¢" + Ex¢” + Es¢ — H(y)

where subscripts are dropped here, and throughout the remainder of this section, from &, Nay, and ¢

The constraint equation (4.2.8b), is evaluated to get the equation

d z b mm 2 mr 2
Z Z(J; {[‘Nx,_(—L—) T]k]"l"'[-Nx,_(T) O+ N, 0, ] ¢}d)’)
a=1 p=1 P

mrx | . My _
xJ;Lcos( I ) sin( 3 )dx}-O

If (m, m,) are (even, even) or (odd, odd) then the x-integral of equation (4.3.3) is zero. Otherwise, the
y-dependent portion of the equation is satisfied independently for each value of o this is written as

(4.3.3)
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P b
Z(j [HO) n+®,0) 0] dy) =0 (“3.4)
p=1 0 P

where
2 2
HO)=[-N(Fnd . 00 =[-N (2o, 48,0, 43.5)

The second-order displacement fields are now determined by minimizing the functional W, given

by
P p .
W= Z (r[(R")2 + (R + (R~)2]dy) + I“,,z (J‘ [H)n+o,0) 6] dy) (4.3.6)
p=1 0 p p=1 0 »

where I, (k=1,2,...) are Lagrange multipliers, and where boundary conditions at the node-lines must
also be met. The functional W is minimized by setting to zero the first variation of W with respect to
the functions &, n, and ¢, and with respect to the Lagrange multipliers I}.

Preliminary work has been done on developing a procedure for solving equation (4.3.6) using a
finite-difference representation of the functions € N and ¢, such as is used in the existing solution
method, described in [7]. In the solution procedure of [7), the generalized force-resultants and gener-
alized displacements at the node-lines are isolated algebraically, so that the (homogeneous) node-line
boundary conditions can be applied directly to the system of equations governing the finite-difference
solution. It appears that this is also possible in a finite-difference solution of equation (4.3.6), except that
the moment resultants at the node-lines do not appear in the resulting system of equations. It thus ap-
pears that for each node-line which is unrestrained with respect to rotation, the zero-moment boundary
condition must be enforced using a constraint equation which is incorporated into the functional W using
an additional Lagrange multiplier.

4.3.2 Subtraction of buckling mode shape contribution. In this approach, {u;} is initially computed
using the method described in Section 2.7, and is then modified by subtracting contributions in the
shapes of buckling modes. The contributions are identified using the orthonormality condition for the
buckling modes, equation (4.2.7). This equation is evaluated in terms of separated variables, and is then
written in the following way, where new operator and inner-product definitions are introduced:

P 2 b
A mr
<tg). Len>= YL - (22 ) N, [ i+ opaay + 0, [ 0,07
). g p§=1[ (27 ) Mmoo+, [ 07ay]
="8,',b,'

where b; is a constant coefficient. Similarly, orthogonality between {u;) and (i), equation (4.2.8a), can
be expressed in terms of the contributions for each value of o as

, 4.3.7)

7(E S mn 2 g
<(&) LUEe)>= ) [ - 57 ) N | MeTig, + 04 0o )y + N, 6,
gk g i pzl ( L ) xLJ; N nau ¢k¢ " dy yLJ:) ¢k¢ ” dy]P (438)

=0
where { Emy} is the modified function which satisfies the orthogonality constraints.

The unmodified function {£,;) is expressed as the sum of the modified function and a series of
buckling-mode contributions {£,)}:

(B, = (Bayd + 3 ilEa) @3.9)
k
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where coefficients ¢, are initially unknown, and

- -&:0)
{&) = n0) 4.3.10)
$:.0)

The buckling modes {&) (r=1,2,...) used in equation (4.3.9) should, ideally, be limited to those with
associated longitudinal halfwave numbers m; which equal the halfwave number |m| corresponding to
the function {&.;}. There are two reasons for this. First, displacement fields with different halfwave
numbers are orthogonal by virtue of their longitudinal waveforms. Second, the relationship between
transverse functions shown in equation (4.3.9) implies a relationship between full-field functions, and
this relationship makes sense only for the case where equation (4.3.9) is applied on the basis of common
longitudinal halfwave numbers.

From equations (4.3.7-9) it can be established that

<(&), L({Ea,))> =~ cib, @3.11)

Coefficients ¢, (k=1,2,...) are computed from the above equation, and then the function {E.,.,-} can be
computed by applying equation (4.3.9).

4.3.3 Direct suppression of displacements. In this approach, the method of Section 2.7 is used to
compute {u;}, but for selected functions {&;} displacement constraints are imposed directly on the model
during the finite-difference analysis. The placement of constraints is done on an intuitive basis; the
general approach is to place constraints along node lines in a way which suppresses large transverse
displacements, while still allowing in-plane expansion/contraction of plate strips. For example consider
the blade-stiffened panel of Figure 3. It would be appropriate to enforce w=0 (global) at node-line
numbers 1, 3, and 4, and impose v =0 (global) at node-line number 2.

Based on results presented in [7], the suppression of displacements using this method is justified
for fields {£.;} with an associated halfwave number /% of zero. It has also been found that suppression
of displacements for m =2 gives improved agreement of analytical results for postbuckling in column-
like modes with predictions based on column theory. For large values of m, matching the boundary
conditions at x =0, L is less important than predicting the proper behavior away from the ends, so direct
suppression of displacements seems inappropriate in this case. Base on results presented in [7], the vi-
olation of boundary conditions at x=0, L is less of a problem with the fields having large values m.

4.3.4 Current approach used in NLPAN. In the current implementation, NLPAN uses a combination
of the methods described in Sections 4.3.2 and 4.3.3. For long wavelength contributions to {u;},
|| <4, direct suppression of transverse displacements, as described in Section 4.3.3, is used. An au-
tomated procedure positions the displacement constraints at selected node lines, assuming that the con-
figuration is a conventional stiffened panel configuration such as a blade-, T-, hat-, z-, etc. stiffened
panel. For unconventional configurations such as complex column sections, the automated procedure
may place constraints inappropriately, so the specification of constraints needs to be done on a case-
by-case basis.

For values m = m; £ m; where m, is large and m; is small, or vice versa, the method of Section 4.3.2
(subject to certain modifications) is applied. These fields, referred to in the literature as "mixed
second-order displacement fields," are known to have a tendency to duplicate the shapes of buckling
modes. Let m, be the (small) halfwave number for the global-buckling mode, and let m; be the (large)
halfwave number for the local-buckling mode. For large m, and small m,,

|| = [yt my| 4.3.12)
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In Section 4.3.2, it was stated that, ideally, m, = i for contributions {£,} to be subtracted from the field
{€a;). In the NLPAN code, one or more modes {E,} are already in use which satisfy m, =m,. These
modes are used with the premise that they satisfy the approximate relationship m=|m|; however this
may or may not be the case in general, because modes are classified using the conditions m, <3 and
m; 2 4. For the treatment of many stiffened panel problems, displacements i, and v, are zero for the fields
of interest, so that matching of m, and 7 is not important. It is not known whether a mis-match in these
values is detrimental to the accuracy of results for more unusual configurations. A more theoretically
pure approach would be to carry along buckling modes which are not necessarily used as shape functions
in the NLPAN analysis, but which match the halfwave numbers | 71| encountered in computing the fields
{u;}, and which, thus, can be used to identify contributions to be subtracted from the second-order dis-
placement fields. This latter approach has not been implemented.
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5. MISCELLANEOQUS CONSIDERATIONS

This section includes brief discussions of some miscellaneous considerations regarding the use of
the NLPAN analysis method and computer code. First, considerations in the design of geometric rep-
resentations of stiffened panels are discussed. Next, the convergence of analytical results with respect
to the finite-difference discretization and mode-set selection is discussed, and mode selection strategies
are suggested for some common cases. Finally, the factors affecting computation time and computer
memory requirements are discussed.

5.1 Geometric Representation of Stiffened Panels

For stiffened panels with multiple evenly spaced stiffeners, experience suggests that a unit-cell
representation in NLPAN is generally preferable to a full, multiple-stiffener representation. (An example
of a unit-cell representation is shown in Figure 5(c).) One reason is that with a unit cell, only a very few
local-buckling modes (one to three) need to be incorporated in the analysis to allow the panel to take
on various types of local deformation (for example, stiffener-web buckling, skin buckling, and flange
buckling), whereas for a full-panel model, a much larger number of modes is required to accomplish the
same thing. This is because the various stiffeners and skin bays in a multiple-stiffener model tend to
participate to different degrees, and in different manners, in any given buckling mode. Another reason
for using a unit-cell representation is that execution time and computer memory requirements increase
with the complexity of the cross section. As a consequence, the number of buckling modes which can
be incorporated as shape functions in an analysis decreases with the complexity of the cross section. For
purposes of comparing the results of a unit-cell analysis with the results of a full-model analysis or test,
it is suggested that the reference load values used in normalizing the various result sets be selected on
the basis of a common axial strain value (assuming that the loading is uniaxial).

5.2 Convergence Considerations

5.2.1 Discretization of the cross section. The cross section of a configuration is discretized in order
to perform both the finite-difference analysis described in Appendix C of [7], and the numerical inte-
gration of the coefficient expressions such as those found in equations (2.8.26-27). Specifically, the
y-dependent variables on each plate strip are evaluated only at a set of discrete, uniformly spaced points
along the local y-axis. Increasing the fineness of the discretization improves the accuracy of results, but
also increases computer memory requirements and increases program execution time.

How rapidly the results converge with increasing fineness of the discretization depends on both the
node-line boundary conditions, and the in-plane load conditions. For example, consider a square, simply
supported plate subjected to a uniaxial compressive load N,. For the in-plane boundary condition given
by BCVEC(2,IB)=2 in Table 3, the load N, is uniformly zero along the y-normal edges, whereas for
BCVEC(2,IB)=3, the y-normal edge remains straight, and the average value N, is zero. Despite the
seemingly small difference in these two sets of boundary conditions, in order to obtain similar accuracy
in the predictions of postbuckling response for the two cases, the latter boundary condition requires the
use of only about one third the number of discretization intervals as the former [7]. For the former case,
a minimum of 30 intervals is recommended, whereas for the latter case, ten intervals provides compa-
rable accuracy. If the load axes are reversed for this problem so that uniaxial N, loading is applied, the
number of discretization intervals required for a given level of accuracy is significantly greater than for
either of the two cases just described.

The minimum number of intervals allowed on any single plate strip is four. When using a unit-
stiffener-cell representation of a uniaxially loaded stiffened panel, where symmetry conditions are im-
posed on the skin at the edges of the cell, the use of a minimum of twelve discretization intervals for
the skin to either side of the stiffener is recommended for local/global mode interaction problems. A
convergence study is recommended as the best way to assure that a model is adequately discretized.
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5.2.2 Mode set. The selection of VIPASA buckling modes used as shape functions in an NLPAN
analysis affects the accuracy of the analytical results in two ways. First, the true qualitative response
of the physical structure can be predicted analytically only if a suitable mode set is incorporated. Sec-
ond, assuming that the appropriate family of buckling modes has been identified, increasing the number
of modes used in the nonlinear analysis enables the computation of accurate results decper into the
nonlinear regime.

In some situations, the set of suitable buckling modes can be selected using intuition. For example,
the mode set for an axially compressed square, simply-supported plate with an edge-length a is given
by sin(mnx/a) x sin(nry/a) (m,n=1, 3,5, ... ) where modes are added starting with the lowest values for
m and n. For general NLPAN configurations, it is much less obvious what comprises an appropriate
mode set, and unfortunately, the use of an inadequate set can cause errors ranging from erroneous
stresses and strains, to the complete failure to predict some modes of response.

For flat, stiffened or unstiffened panels subjected to in-plane loading, some guidelines for selecting
modes are provided here. The guidelines are based on experience in modelling panels in which the
buckling modes are classifiable as "global" or "local". A global mode is characterized by a long wave-
length and minimal distortion of the cross-section. A local mode is characterized by short wavelength
buckling of plate strips in the structure, with significant distortion of the cross-section. Separate guide-
lines are offered for symmetric structural sections and unsymmetric structural sections, because the for-
mer can generally be modelled with fewer modes. ("Symmetric” refers to the initial geometry, not to
the response.)

The mode selection guidelines are presented in Table 5. In the table, the label (m,i) is used to
designate the i* buckling mode in the infinite sequence of modes having the longitudinal halfwave
number m, where the modes are ordered based on their eigenvalues. Label m, is used to designate the
longitudinal halfwave-number for the critical local-buckling mode. A modal-interaction analysis is ap-
propriate if the critical loads for global buckling and local buckling both have the same order of mag-
nitude. It should be noted that when a clamped-end simulation is used, the global buckling load is
approximately four times the buckling load computed by VIPASA for mode (1,1).

The modes suggested for Local Postbuckling are intended to preserve the basic shape of the
buckling mode while allowing refinement of the shape with increasing loading. The level-1 modes
suggested for Local/Global Mode Interaction are intended to model the basic mechanism leading to
imperfection sensitivity and structural collapse. The level-2 modes for Local/Global Mode Interaction
are intended to simulate "amplitude modulation," which is the modulation (along the length of the
structure) of the amplitude of the local-mode deflections due to the variation of bending curvature (along
the length) due to the global-mode displacements. The strategy for selecting mode sets for local/global
mode interaction is discussed in greater detail in [23].

The following additional comments apply to Table 5:
1. It is assumed that a global mode of a symmetric structure is symmetric.

2. If m is even and Local/Global Mode Interaction is to be simulated, it is advised to set m to the next
lower (odd) integer. This is because the large bending curvatures at the mid-length of the structure
tend to cause local-mode displacements to be maximized at the mid-length.

3. For Local/Global Mode Interaction problems with symmetric structures, two different mode sets
(labeled A and B) are provided with the intention that each mode set be used independently in
separate analyses. One set models symmetric local-mode displacements, and the other models un-
symmetric local-mode displacements. These recommendations are based on results published in
[23], in which the direction of the global-mode response determined whether the local-mode re-
sponse was symmetric or unsymmetric.
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Thermal loading, as modelled with NLPAN, tends to induce in-plane normal loads. The mode sets
suggested in Table 5 are suitable for use in modelling thermal loading if the unit in-plane loads used in
generating the mode shapes are similar to the in-plane reaction loads generated during thermal loading.
Regarding pressure loading, whether or not suitable buckling mode shapes exist (for use as global shape
functions) depends on the specific configuration considered, and this, in tum, affects the ability of
NLPAN to model the response to pressure loads. For example, the pressure response of simply sup-
ported rectangular plates can be accurately modelled, whereas NLPAN does not perform well in mod-
elling the highly three-dimensional response of a pressure-loaded stiffened panel (see Section 6.3).
NLPAN has been used to investigate the snap phenomenon in postbuckled plates [24], in which a sec-
ondary instability (in the postbuckled regime) initiates a sudden change in the waveform. While the
solution strategies incorporated in NLPAN are well suited to the analysis of this type of response, the
accurate quantitative (and qualitative) prediction of secondary instabilities requires the incorporation of
a large number of appropriately selected modes. The proper selection of these modes is a difficult
process (see, for example, [19]) and therefore no general strategies for making such selections are offered
here.

5.3 Computer Execution Time and Memory Requirements

The execution time for an NLPAN run is approximately proportional to the complexity of the cross
section (in terms of the number of discretization points) and approximately doubles with each buckling
mode added as a shape function. Typical execution times for mainframe computers and mini-computers
are a few seconds for a single-mode analysis, and a few minutes for an analysis with ten or so modes.

Computer memory requirements also vary with the complexity of the cross section and the number
of buckling modes used. The NLPAN code is designed to run entirely within computer memory, so the
size of the NLPAN analysis is limited with respect to the two characteristics mentioned. NLPAN em-
ploys a single data vector to store, in sequence, all large data arrays, and the array dimensions are set
based on the actual requirements needed for each specific problem. Because of this feature, NLPAN can
use all of the computer memory which it reserves. The limit to the size of a problem which can be
analyzed is adjusted by changing a single dimension parameter in the FORTRAN source code and re-
compiling the code.
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6. RESULTS

In this section, some key features of the NLPAN code are evaluated through applications to test
problems. First, the local-postbuckling response of a stiffened composite panel with a complex cross-
section is investigated. Second, the nonlinear response of an imperfection-sensitive thin-blade-stiffened
panel under uniaxial loading is explored. Third, a stiffened composite panel subjected to transverse
pressure loading is considered. Fourth, the thermally induced buckling and postbuckling response of an
unstiffened square composite panel is modelled. Finally, conclusions from a separately reported study
[23] of panels and columns with constrained end-rotation are summarized.

Some of the new features discussed in this document have been applied to test problems which are
reported elsewhere. Results which illustrate various aspects of the nonlinear solution strategies (described
in Appendix D) are included [16). Results from an application of NLPAN to the problem of the snap
of a rectangular plate from one buckled waveform to another are presented in [24].

6.1 I-Stiffened Graphite/Epoxy Panel Under Axial Compression

NLPAN was used to model an I-stiffened graphite/epoxy panel loaded in uniaxial compression. The
configuration is one which was tested experimentally; specifically the configuration is that of test panel
U6 of [25]. Some features of the panel and it's buckling response are summarized in Figure 5. The
overall dimensions are shown in Figure 5(a). The panel featured a flat skin to which four stiffeners were
bonded. The panel ends were mounted in potting material, and were then machined flat and parallel to
form contact surfaces for flat-end loading. The cross-section of a representative stiffener is shown in
Figure 5(b). A complete description of the panel is given in [25].

The stiffener flanges of the test panel were tapered, as depicted in Fig. 5(b). In the NLPAN analysis,
the tapered flanges were approximated (on each side of the stiffener web) as three-step flanges by using
three plate strips of different thicknesses. A unit-stiffener-cell representation of the panel was used, with
symmetry conditions imposed on the skin at the edges of the unit cell. The profile of the primary
buckling mode (as computed by VIPASA) is plotted in Figure 5(c). (The three-step flange model can
be seen in the figure.) The buckling mode has five longitudinal halfwaves, as indicated in Figure 5(a).

The theoretical buckling load for the full panel is reported in [25] to be 156 KN, determined using
PASCO [13]. Reference [25] states that the mean lamina thickness was 0.014 cm The use of this mean
thickness in the current investigation resulted in PASCO predictions of a buckling load of 210 KN. (To
obtained this value, the critical value of axial strain computed by PASCO for the unit-cell model was
imposed on the full-panel model assuming linear response.) The discrepancy between the two computed
buckling loads was judged to be too large to be due to a difference in the axial buckling strain for the
unit-cell model and the full-panel model. A second analysis was performed assuming a mean lamina
thickness of 0.0127 c¢m (0.0050 in.), and this resulted in a predicted buckling load of 157 KN, almost
exactly the value reported in [25]. Because of this agreement, the lamina thickness 0.0127 cm was used
for the NLPAN nonlinear analysis. (Critical values of end displacement corresponding to assumed lamina
thicknesses of 0.014 cm and 0.0127 cm were computed to be 0.094 cm and 0.077 cm, respectively,
compared to the experimentally measured value 0.08 cm, reported to one significant digit [25]. This
result further supports the use of the smaller lamina thickness value.)

As rcported in [25], the critical load for global buckling (a single longitudinal halfwave) was well
above the critical load for the local-buckling mode depicted in Fig 5(c), so it was assumed that the
postbuckling response would be limited to a local-buckling type of deflection pattemn. Thus, only four
modes were incorporated as shape functions, namely (using the notation of Table 5) modes (5,1), (5.3),
(15,1), and (15,3). The last three modes serve to refine the general shape of the first mode as the load
increases beyond the buckling load. The unsupported length of 72.5 ¢cm was used in the NLPAN cal-
culations. A shape imperfection was simulated in the analysis, having the shape of the primary buckling
mode and an amplitude of one percent of the skin thickness. All loading, displacement, and strain results
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presented here are normalized by the theoretical values at the critical buckling load, as computed by
PASCO.

Expcrimental and analytical results are presented in Figures 6 and 7. Results of end load versus
end shortening are plotted in Figure 6(a), where both measures are normalized by the critical values for
theorctical buckling. Panel failure occurred at a postbuckling load factor of 2.96 [25]. The theoretical
end-shortening values plotted are the values computed by NLPAN plus a correction for the axial
compressibility of the potted ends, assuming that the axial strain in the ends is proportional to the axial
load as determined by the axial stiffness before panel buckling. The NLPAN results show slightly less
axial stiffness beyond the buckling point than was measured experimentally; this may be due to the
difference between the clamped condition of the skin at the ends of the test panel and the simply sup-
ported condition of the skin at the ends in the analytical model. The distribution of the longitudinal
membrane strains in the skin across the center skin bay at the mid-length of the panel is plotted for three
load levels in Figure 6(b). It can be seen that the NLPAN results are in good agreement with the ex-
perimentally obtained values for all three load levels, the only appreciable disagreement being near the
center of the bay for the higher load levels.

Results for the variation of longitudinal surface strains with end load are plotted in Fig. 7 (with all
values normalized). The panel locations where strains are measured are indicated in Fig. 7(a). The sur-
face strains on the skin at the center of the panel (locations A and B) are plotted in Figure 7(b). There
is minor disagreement between the analysis and the experiment, but overall agreement is good. The
opposing surface strains on and under a stiffener flange (locations C and D) are plotted in Figure 7(c).
The expcrimental and analytical strain values differ by a uniform percentage over the entire load range.
This discrepancy, which is present even in the early prebuckling regime, remains unexplained. If one
or the other results set is scaled so that the prebuckling slopes match, then the two sets of results are in
very close agreement. Whatever the cause of the inconsistency noted here, the agreement between the
two results sets is still fairly good in this region of complex cross-sectional detail.

6.2 Imperfection Sensitivity in a Thin-Blade-Stiffened Isotropic Panel

NLPAN was used to model a thin-blade-stiffened isotropic panel loaded in uniaxial compression.
The response of the configuration is sensitive to imperfections because of the interaction of the local
and global buckling deformations. The configuration is one which was tested experimentally by
Thompson and associates [26]. The cross-sectional proportions of a unit-stiffener-cell of the panel are
shown in Figure 8(a). This unit-cell representation was used in the analysis; the test panel had nine skin
bays and ten stiffeners. The panel was fabricated from epoxy resin.

This configuration was modelled with NLPAN previously, as reported in [7]. In the previous in-
vestigation, NLPAN was found to successfully predict imperfection sensitivity, but gave unconservative
predictions for the limit loads of imperfect panels compared to experimental measurements. The purpose
of revisiting the problem here is to investigate the influence of two new factors in the analysis on the
accuracy of the predictions. The first factor is the use of the procedures described in Section 4.3.4 for
enforcing, approximately, orthogonality between the second-order displacement fields and the buckling
mode shapes. The second factor is the use of a mode selection strategy which enables the modelling of
the amplitude modulation phenomenon. In this mode-selection strategy, once the local-buckling mode(s)
to be used in the analysis is (are) identified, having a longitudinal halfwave number m,., then additional
local-buckling modes are incorporated which have transverse profiles similar to that (those) of the pri-
mary local-buckling mode(s), but having longitudinal halfwave numbers (7, —2) and (M. + 2). This
strategy is reflected in the mode-selection guidelines of Table 5, and is discussed further in [23]. It was
hoped that the presence of these two new factors would improve the agreement of the analytical results
with the experimental data.

Global (Euler-buckling mode) response was modclled using mode (1,1). The critical local-buckling
mode is mode (7,1). The ratio of the critical load for local buckling P, to the critical load for Euler
buckling Py was P/Pr=1.05. The local-buckling mode (7.3) was also deemed important so that two
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possible modes of collapse initiation could be activated (skin buckling or stiffener buckling). Using the
guidelines from Table 5, the following modes were selected for modelling local-buckling deformations:
S.D, (5.3), (7.1), (7,3), (9,1), and (9,3).

Local-mode imperfections of two different amplitudes were used. These were in the shape of mode
(7,1), with amplitudes of 2% and 10% of the skin thickness. A range of amplitudes of Euler-mode
imperfections were used. Positive Euler-mode deflections increase the compression of the skin, and
negative Euler-mode imperfections increase the compression of the stiffener blade. The results for limit
load versus Euler-mode imperfection amplitude are plotted in Figure 8(b), where the limit loads are
normalized by the theoretical critical load for Euler-mode buckling. The solid lines show the baseline
analytical results. A second set of analytical results was generated without performing the the
orthogonalization of the mixed-second-order displacement fields (see Section 4.3.4). These are plotted
in Figure 8(b) with dashed lines.

For the baseline analytical results, the limit loads for negative values of Euler-mode imperfections
are slightly lower than those reported in {7) (not shown here), but are still unconservative. For positive
values of Euler-mode imperfections, the baseline limit loads are actually higher (more unconservative)
than the analytical results reported in [7]. With the orthogonality condition not imposed, the predicted
limit loads for positive Euler-mode imperfections drop sharply; they match the experimental data more
closely for lower-amplitude Euler-mode imperfections, but diverge from the experimentally observed
trends for larger amplitude imperfections. For negative Euler-mode imperfections, dropping the
orthogonality condition resulted in a slight increase in the predicted limit loads.

It was hoped that the analytical features added in the current investigation relative to the analyses
reported in [7] would provide improved agreement with the experimental measurements. The mode-
selection strategy used can be judged as an improvement, based simply on the argument that it enables
the analysis to simulate the amplitude modulation which is known to occur in reality. However the im-
position of the orthogonality condition has a mixed influence on the agreement between the analytical
and the experimental results. Therefore, despite any theoretical justification for imposing orthogonality,
it's not clear whether or not the accuracy of the method is improved by the practice. There do remain
questions about some aspects of the experimental results [7]. These questions include the validity of
assuming linear elastic material properties, and the exact shape of the local-mode imperfections, where
the latter question concerns the fact that the imperfection amplitudes were measured only on the skin.
Sridharan and Peng published results [4] showing good agreement between analytical results and ex-
periment for this problem, but to obtain the results for negative Euler-mode imperfections, they used
local-mode imperfections which highly amplify the stiffener waviness (compared to the nominal
imperfection amplitudes) for the case of negative Euler-mode imperfections. This suggests that in the
test pancls, the stiffener waviness may have been greater than the skin waviness. In order to assess the
accuracy of the NLPAN predictions with more certainty, it is suggested that finite-element analyses be
performed which duplicate the NLPAN configuration and boundary conditions. This would allow an
assessment of the NLPAN analysis without the uncertainty which accompanies experimental results,

The use of an alternate method for generating VIPASA buckling mode shapes might improve the
analytical predictions of NLPAN. It is noted in the discussion in [7] that a linear combination of the two
buckling modes (7,1) and (7,3) can be used to approximately simulate isolated skin buckling or isolated
stiffener buckling. However, the word "approximate" is important here. Mode (7,3) features large
stiffener rolling displacements, but also includes short wavelength curvature of the skin in the transverse
direction which would be expected to have a high level of associated strain energy. This may lead to
suppression of the (7,3) mode, thus inhibiting the ability of the two local modes to represent two isolated
forms of local deformation. If the two local-buckling mode shapes each represented an isolated mode
of displacement (skin buckling or stiffener buckling) without the superfluous waviness present in the
(7,3) mode, then the local-buckling displacements might be more easily excited, resulting in increased
modal interaction and imperfection sensitivity. Such alternate local-buckling modes could be generated
by exploiting the ability of PASCO to modify the transverse distribution of pre-buckling stresses so as
to simulate transverse pressure, load eccentricity, or bowing imperfections. The local-buckling modes
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generated in this way will tend to exhibit the types of isolated response deemed desirable here. This
procedure has not yet been incorporated in NLPAN.

6.3 Stiffened Composite Panel Under Pressure Loading

NLPAN was used to model a stiffened AS4/3502 graphite/epoxy composite panel restrained at the
edges and subjected to transverse pressure loading. The panel was rectangular with a single T-stiffener
bonded to the center of the panel parallel to one axis. The configuration is one which was tested ex-
perimentally, specifically Panel A of Ref. [27]. The nominal configuration of the panel test section is
shown in Figure 9(a), and the stiffener cross-section and the laminate stacking sequences are shown in
Figure 9(b). (The origin of the coordinate system appearing in the figure corresponds to that used in [27],
which differs from that used in the NLPAN model.) The lamina elastic properties used in the analysis
are also listed in Figure 9(b). The side (y-normal) edges of the panel were clamped and fixed with re-
spect to in-plane displacements. The physical panel extended beyond the test section at each longitudinal
end. The panel ends were not clamped at the ends of the test section; instead, the panel was supported
against out-of-plane deflections, and the clamped condition was simulated by loading the panel with
pressure on both sides of the end-supports. The physical ends of the panel were restrained against in-
plane displacements. Because the length of the test section was greater than the length of the outer
pressure-loaded bays, the effective boundary condition at the ends of the panel may have differed
somewhat from an ideal clamped condition.

The direction of the pressure loading is indicated in Figure 9(a). The observed panel response was
fairly symmetrical with respect to the stiffener, so for the NLPAN analysis, only symmetric mode shapes
were incorporated. The unit system of generalized in-plane loads used for generating the VIPASA
buckling mode shapes consisted of a unit axial load imposed at the x-normal ends with v held to zero
at the y-normal edges. The critical axial load for these boundary conditions was 1983 Ibs. for the first
unsymmetric mode, mode (1,1). The critical loads for symmetric modes (1,2) and (3,2) were 3265 lbs.
and 2496 1bs., respectively. Ten modes were incorporated in the analysis, namely the first five symmetric
modes with one longitudinal halfwave, and the first five symmetric modes with three longitudinal
halfwaves.

NLPAN was run first with a clamped-end condition simulated by imposing axial displacement
constraints at the top and bottom of the stiffener blade at each end of the panel. Because the displace-
ments computed using this representation were somewhat strange (discussed below), additional NLPAN
runs were made, first modelling simply supported ends, then applying rotationally elastic support to the
ends of the stiffener. The results are summarized in plots of displacement profiles presented in Figure
10. In the figure, the rotational spring constant is denoted K., and the normalized spring constant, defined
in the figure, is denoted K. The transverse displacements w (positive for skin-side-out deflections) are
normalized by the skin thickness 4= .04 in.. The distribution of displacements across the width of the
panel at the mid-length are plotted in Figure 10(a). The distribution of displacements along the length
of the panel are plotted in Figure 10(b) for the panel centerline (under the stiffener), and in Figure 10(c)
for the skin at y/B=0.25 . (The data plotted in Figure 6 of [27] was rescaled for plotting here in Figure
10(b-c), to provide consistency with Figure 5 of [27]. The latter figure has the correct scale; this was
learned through an inquiry to author M.W. Hyer.) For the clamped-end simulation, the analysis predicts
the transverse displacement of the stiffener to be essentially zero (actually, slightly negative) along the
length of the panel, which is inconsistent with the measured response. By varying the degree of end
constraint, the computed displacements can be brought into the ballpark of the measured displacements,
but clearly the analysis has some shortcomings.

The chief shortcoming identified by the author is the poor suitability of the buckling mode shapes
of the panel for representing the pressure response. The buckling mode shapes are skin-dominated, and
for all 5 of the modes having 3 longitudinal halfwaves, the stiffener blade remains essentially
undisplaced compared to the skin. This causes the clamped-end boundary condition (imposed on the
stiffener blade) to suppress the single-halfwave displacement contributions at the stiffener. These results
expose an inherent shortcoming in the approach of NLPAN for modelling pressure-type response. The
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deformations in the panel considered here are highly three-dimensional, and the VIPASA buckling
modes for the panel are found to be poorly suited for representing these deformations. The pressure
simulation has been found to work well for simple rectangular plates, and can be expected to work well
for driving bowing-type deformation of a wide panel, because, in these cases, the buckling mode shapes
are similar to pressure-induced displacements.

In Figure 10(c), it can be seen that the displacement w predicted by NLPAN for the skin at the ends
of the panel is non-zero, despite the nominal boundary condition w=0 at the ends. These non-zero
displacements are due to the second-order displacement fields. Despite the use of direct suppression
of displacements as described in Sections 4.3.3-4.3.4, there is a significant violation of the boundary
condition. This occurred because the displacements at the ends are suppressed only at the node lines,
and there is a wide expanse of skin (on each side of the stiffener) between the node line at the edge of
the stiffener flange and the node line at the edge of the panel. A second NLPAN model was generated
which had an additional node line in the skin on each side of the stiffener. With the displacements
suppressed at these two additional points, the violation of the boundary condition was greatly reduced,
and the overall displacement levels were somewhat reduced for the cases where the stiffener was not
clamped. However there was no significant overall improvement in the analytical predictions.

6.4 Thermally Loaded Unstiffened Composite Panel

NLPAN was used to model the buckling and postbuckling behavior of a square, unstiffened
graphite/epoxy panel subjected to thermal loading. The configuration is one for which analytical results
were generated by Meyers and Hyer [28]. The plate is an eight-ply laminate with the edges simply
supported, but with edge-normal displacements constrained to zero. The laminate stacking sequence is
[+45/-45/0/0)s. The configuration details and material properties used in the analysis are presented in
Figure 11(a). The plate is subjected to a uniform (change in) temperature. Meyers predicts a critical
buckling temperature of 69.4 deg. F, whereas NLPAN predicts a buckling temperature of 71.4 deg. F.
The slight difference may be due to the fact that Meyers accounts for the laminate stiffness constants
Dys and Dy, whereas these values are assumed to be zero in NLPAN.

NLPAN postbuckling analyses were performed using four different mode sets. All buckling modes
used are sinusoidal in both the x- and y-directions. Let (m,n) denote the buckling mode with m and n
halfwaves in the x- and y-directions, respectively. Four different mode sets were used with NLPAN, as
listed here:

i. 1 Mode: (1,1)

ii. 3 Modes: (1,1), (1,3), (3,1)

ili. 6 Modes: (1,1), (1,3), (1,5), (3.1), (3,3), é,D

iv. 10 Modes: (1,1), (1,3), (1,5), (1,7), (3,1), (3.3), 3,9), (5,1), (5,3), (7.1)

The normalized center deflection of the plate is plotted versus the normalized temperature in Figure
11(b). All four mode sets used with NLPAN produce similar results up to a normalized temperature of
about 1.8 . Beyond that temperature, the NLPAN results for 3, 6, and 10 modes diverge from the results
for 1 mode, with the results for 6 and 10 modes being practically identical. The multiple-mode NLPAN
analyses predict that the center deflection increases with temperature up to a normalized temperature of
about 4.5, beyond which the center deflection decreases.

The results from [28] agree with the NLPAN results up to a normalized temperature of about 1.8,
beyond which the center deflection predicted in [28] falls progressively below that predicted by NLPAN.
The method of analysis used in [28] is more general than the method of NLPAN (for simple rectangular
plates) in terms of modelling flexibility, but both methods share the characteristic of modelling transverse
out-of-plane displacements using double sine functions. This author believes that the current results are
more accurate than the results of [28] (for this specific configuration) for the following reason. The as-
sumed form for displacements used in NLPAN guarantees that for simple rectangular plates, the in-plane
equilibrium equations are satisfied exactly for any arbitrary set of buckling modes used. This is because
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the in-plane displacements are second-order in terms of the modal amplitudes, so the selection of
buckling modes determines the terms used in the in-plane displacements. With the method of [28], the
shape functions used for in-plane displacements are selected independently of the shape functions
(buckling modes) used for out-of-plane displacements, so that the in-plane equilibrium equations are not
satisfied exactly unless the proper set of of terms for the in-plane displacements have been included.
The characteristic halfwave numbers for the important in-plane displacement terms are derived from the
sums and differences of the halfwave numbers for the buckling modes (sce equations (2.7.4) and (2.7.5)),
so that the important in-plane displacement terms do not form a contiguous group when they are ordered
based on their characteristic halfwave numbers. Because of this, a convergence study performed by
progressively increasing the number of in-plane displacement terms may exhibit a false convergence
before important terms have been included. Without knowing exactly which shape functions were used
to gencrate the results reported in [28), no final verdict can be reached, but the convergence of the
NLPAN results with increasing numbers of mode shapes gives some confidence in the latter results.

6.5 Panels and Columns with Constrained End-Rotation

The modified-end-support modelling features described in Sections 3.3 - 3.5 were given an initial
assessment through applications to several test problems which are described and reported in [23]. The
conclusions noted in [23] are summarized here.

The buckling of a slender clamped-end column was simulated. As additional displacement terms
are incorporated into the solution procedure, the predicted buckling load converges to the theoretical
value predicted by column theory . The NLPAN predictions of buckling load converge from above, and
therefore, using a small number of displacement terms as is typically the practice, the results are un-
conservative. However, for two different tests of an imperfect axially compressed T-stiffened composite
panel with clamped ends, NLPAN predicts, with relatively good accuracy, both the mechanisms of
structural collapse, and the limit loads suggested by the test data. A greater variety of clamped-end
configurations need to be modelled using NLPAN in order to more fully assess the performance of the
analytical approach.

The mode-selection strategies discussed in [23] (and Section 5.2.2) were used in the analysis of
axially compressed stiffened panels which were expected, based on their proportions, to exhibit local-
global mode interaction. Amplitude modulation of the local-buckling modes during mode interaction
was successfully modelled. Expected amplitude-modulation trends were observed for both a clamped-end
panel and a panel with simply supported ends.
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7. CONCLUDING REMARKS AND RECOMMENDATIONS

7.1 Concluding Remarks

A number of improvements and additions to the method of NLPAN were developed as a part of
the current effort. The primary additions to the analytical capabilities are listed here:

1. Transverse pressure loading can be modelled.

2. Thermal loading (constant through-the thickness) can be modelled.

3. Clamped ends, rotationally elastic end support, and eccentric end loading can be modelled.
4

Advanced solution strategies have been implemented which allow equilibrium solution paths to be
followed past limit points and past solution branch points of multiplicity one or two.

5. 'The strategy for modelling biaxial in-plane load application has been improved, including the cor-
rection of errors present in the original method.

The method of NLPAN is asymptotic in nature so that solutions must be regarded as having po-
tentially significant errors. That is not to say that accurate solutions can not be obtained in the signif-
icantly nonlinear regime of response; the method incorporates second order contributions to
displacements and fourth order contributions to total potential energy which are sometimes ignored by
investigators when applying asymptotic approaches of the type used here. For simple rectangular plates,
the NLPAN analysis degenerates to an exact series solution of the von Karman nonlinear plate equations
(assuming that sufficiently fine discretization of they-domain is used for the numerical portions of the
analysis). For general configurations, errors in computed solutions may be present due to the following
factors: i) approximations made in deriving the strain-displacement relations, ii) the neglecting of dis-
placement contributions beyond order two and energy contributions beyond order four, iii) the use of
an inadequate number, or a poor selection, of VIPASA buckling mode shapes for use in the nonlinear
analysis, iv) uncertainties in the method used to compute the second-order displacement fields, and v)
the numerical error associated with the finite difference solution of the second-order displacement fields
and the numerical integration of various functions over the transverse domain of the structure.

For structures in which the buckling and postbuckling response is limited to local-buckling dis-
placement shapes (little or no global-mode displacements), NLPAN gives good predictions up to loads
of several times the buckling load. Because of its the modelling flexibility, NLPAN is well suited for
analyzing relatively complicated cross sections for this type of response. Local/global mode interaction
and the associated imperfection sensitivity are successfully predicted by NLPAN, although some
questions remain about the quantitative accuracy of the predictions. Modifications were made to the
theoretical approach, and improved mode-selection strategies were established, in attempts to improve
the accuracy of predictions for this type of response, but the results of these effort are inconclusive.

When NLPAN is used to model the response of a structure (panel) to transverse pressure, it has
been found that the accuracy of the predictions is limited because of the inability of the buckling mode
shapes to represent some types of pressure response. For simply supported rectangular plates, the
buckling modes are well suited for modelling pressure response. The buckling modes are similarly well
suited for modelling the pressure response of panels which buckle in a wide-column mode. However,
for a relatively short-length, tall-stiffener panel with clamped ends and clamped edges, the buckling
mode shapes were found to be poorly suited for modelling the highly three-dimensional response
produced by pressure loading.

NLPAN predictions of the post-thermal-buckling response of an unstiffened rectangular composite
panel with constrained edges agree with other published analytical results in the early postbuckling re-
gime. Arguments are made which support the accuracy of the NLPAN results over the other published
results in the deeper postbuckling regime. Because the constant through-the-thickness thermal loading
used in NLPAN acts like a form of in-plane loading (which secondarily induces bending and buckling
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displacements), NLPAN should perform equally well in analyzing the response to either thermal loading
or in-plane loading.

The clamped-end modelling feature was found to give relatively accurate predictions of the response
of a stiffened composite panel which was tested in uniaxial compression. A greater variety of test cases
must be explored in order to more fully assess the accuracy of this modelling option.

The advanced nonlinear solution strategies are found to generally work well, although the per-
formance is somewhat dependent on several control parameter values and on the amplitude of
imperfection shapes used. Sometimes numerical or approximation errors have the same effect as ge-
ometric imperfections, and can thus cause unexpected results. Extremely small modal imperfection
amplitudes should be avoided, because this results in solution paths with zones of extremely high cur-
vature which the solution procedure has trouble characterizing. In general, the use of significant
modal-imperfection amplitudes for the dominant buckling modes results in robust performance of the
solution procedures.

7.2 Recommendations for Future Work

Suggestions are offered here for future work toward improving the NLPAN analysis program. Im-
provements are sought primarily for the accuracy of the predictions for local/global mode interaction.

1. Investigate the use of VIPASA local-buckling mode shapes which have been generated using posi-
tive and negative eccentricities in the PASCO analysis.

2. Compute second-order displacement fields by rigorously imposing orthogonality with respect to the
buckling modes, and compare the fields with those computed using the methods discussed in this
document and with results from finite element analysis.

3. Investigate modifications to the strain-displacement relationships which may be warranted based on
rotation and mid-surface-curvature amplitudes typically encountered.

4. Improve the integration of the PASCO and NLPAN computer programs so as to eliminate the need
for the redundant specification of some input parameters.
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APPENDIX A: FORMULAE FOR THE LINEAR, UNBUCKLED SOLUTIONS

Formulae for computing the linear, unbuckled solutions corresponding to both the unit in-plane
loads and the unit thermal loads are discussed in this appendix. The two sections correspond to the two
distinct load systems.

A.1 Response to the Unit In-Plane Loading

The specific formulae for determining the solution {i.} associated with the unit in-plane load sys-
tem (see Section 2.5) are presented here. The formulae are compatible with the equations used in PASCO
[13] but are redeveloped here for completeness in the documentation, using notation consistent with the
present development. Biaxial loading is permitted only if there is a continuous planar skin connecting
the boundary node lines; otherwise only uniaxial loading N, is permitted. Nonetheless, the solution is
developed here assuming that a planar skin exists, and that biaxial loading is imposed, because this
provides a solution that is applicable to all models, so long as the unit in-plane load system adheres to
the limitations specified in Section 2.3.

A vector {k} of length P is used to specify which plates are part of the panel skin, where P is the
number of plate strips in the model. The elements &, of vector {k} are defined such that

_ J 1 if plate strip p is part of the panel skin - .
% {0 otherwise r=12,...P A.1.1)

The unit global load N, is the mean unit axial load in the longitudinal direction per unit width of
the panel, and can be expressed as

P
1
N, =5 D (b, (A.12)
p=1

where B is the reference width of the panel, N is the value of N, (on plate strip p) corresponding to the
unit solution, and b is the width of the plate strip. The unit global load N, is the unit edge-normal load
per unit length of the panel, and it acts on the panel skin at the boundary node lines. This load is carried
by all plate strips in the panel skin, so that the unit y-normal stress resultant in plate strip p is given by

Ny)p = kNG, ®=12,...P) (A.13)

The unit normal stress resultants within each plate strip are related to the unit normal mid-surface strains
of the plate strip through the plate constitutive equations (equations (2.1.11) ):

(Nyp = (A, + ApE,), (@=12,..,P) A.1.4)
(NYL)P = (AlexL + A22€YL)P (p = 1, 2, cer P) (AIS)
where the unit longitudinal strain, €., is uniform throughout the panel.

Using equation (3) and the equation (5), the unit transverse (in-plane) strain in each plate strip can
be expressed in terms of the unit longitudinal strain and the unit load Nyg.:

_ N >GLkp — &, (A, _
(&)p= ), r=12,...,P (A.1.6)

The unit longitudinal strain associated with the specified global load components can be determined by
using equation (4) and equation (6) in equation (2) to obtain the following expression:

£, = L__SI N el (A.1.D)

where s, and s; are given by
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P P
5= ) (bC), $2= ) k(bR), (A.1.8)
p=1 p=1

where
2
Co=(A - A/Ap), R,= (A12/Ap), (A.1.9)

With the unit axial strain now known, equation (6) is used to determine the unit y-normal strain within
each plate strip. Equations (4) and (5) are then applied to determine the unit normal in-plane stress re-
sultants within each plate strip.

The change in width Av, (the change in dimension between the two boundary node lines) is simply
the sum of the changes in width of the plate strips comprising the panel skin, and this can be expressed
mathematically as

P
Bv.= Y kbe,), (4.1.10)
p=1
Define the mean y-normal strain of the panel skin to be
— AVL
=g (A.1.11)

Using equations (6) and (10) to re-express equation (11), the mean y-normal strain in the skin can be
expressed in terms of known values:

£, =5 My, — £,5) (A.1.12)

where constant s, is given by
P
5= ) k(blA), (A.1.13)
p=1

A few additional relationships are required for use when the boundary conditions are specified in
particular ways. By substituting equation (7) into equation (12), the normal unit load on the side
boundaries can be expressed as

B
N)GL=(EYGL+NIGLj—?)(#) (A.1.14)

5155+ (55)°
From equation (7) it can be determined that

5

Ny, =N B —¢, - (4.1.15)

Equating the above two expressions for Ny, the following expression for N, can be obtained:
2
_ 5183 + (52 - 5
NXGL—EXL(T +£’)’GL? (A.1.16)
For configurations having no continuous planar skin ({k) = {0}), equation (16) degenerates to

51
N, =&, 5 (A.1.17)
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There are four different cases identified for sets of parameters which may be used to specify
boundary conditions for the unbuckled panel. These cases are discussed individually below.

Case 1) N, and N,g, specified. For this case, equations (3) through (13) provide the solution. The
sequence of application of the equations is (8), (7), (6), (4), (3), (13), and (12).

Case 2) Ny specified and €,c. =0 (Av,=0). For this case, equation (14) is used to determine the
effective unit load N,c,.. Next, the sequence given for Case (1a) above will provide the complete solution.

Case 3) €4 and €. specified. First, equation (16) is used to determine the effective unit load
Ny, then equation (14) is used to compute the effective unit load N,c,. Next, the sequence given for
Case 1) above provides the complete solution.

Case 4) €4 and Nyq, specified. This case is required for determining the unit solution {u,} used in
modifying the second-order displacement fields (see Section 2.7). For this case, the sequence of appli-
cation of equations is (8), (13), (12), (6), (16), (4), and (3).

A.2 Response to the Unit Thermal Loading

The equations used to obtain the solution {ur} to the unit thermal loading (see Section 3.2) are
discussed here. Let Avr be the change in width between the two boundary node lines, for the case where
a flat, continuous skin is present (a case where bi-axial loading is admissible). Parameter €cr is the
mean y-normal strain in the skin, so that

£ g, = AvyiB (A4.2.1)

where B is the reference width. N.or is mean load per unit panel width acting normal to the panel ends,
and N,cr is the mean edge-normal load per unit length along the boundary node lines acting in the global
y-direction.

The following equations relate the various parameters applying to an individual plate strip (from
equations (3.2.4) and (3.2.7)):

&=, - fo, (A2.2)
&=, - fay (A2.3)
N, = Ay en + Al (A2.9)
Ny, = Ay + Ape (A2.5)

where T is the unit thermal loading on the strip, other symbols are defined in Section 3.2, and the fol-
lowing equations relate the parameters of the various plate strips to the global parameters (see equations
(A.1.2-3), (A.1.10), (A.2.1) ):

Nypdp = kN, (A2.6)
P
N, == D (bN,), 42.7)
=1
P
R DY AC A (42.8)
p=1
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where p is the plate-strip index number, P is the total number of plate strips, b is the width of an indi-
vidual plate strip, and &, is defined in equation (A.1.1).

To aid in the expression of the equations used to obtain the unit thermal solution, parameters C,,
R,, 51, 52, and s; defined in Section A.1 are used, along with the following additional parameters:

P P
F,=[(An/Apo, + o] Sq= Z(fbc‘a,),, 55 = zk,,(brr),, (A2.9)
p=1

p=1

The sequence of operations used to obtain the complete unit thermal response depends on which options
are selected for control of the generalized in-plane loading (see Table 1). Four different cases are dis-
cussed.

Displacement control, Option 1. The homogeneous boundary conditions are given by

=0
EXT =0 (A.2.10)
86, =
The following equations are applied:
NyG1-=—s5 /S3 (A.le)
A
(€& )p = kbNyG, (A, + (TF),  (p=1,2,..,P) (A.2.12)

and the remainder of the solution is obtained by application of equations (2), (3), (4), (5), and .

Displacement control, Option 2. The homogeneous boundary conditions are given by

&, =0
Ny, =0 (A.2.13)

The following equations are applied:
A
(&,)p,=(TF), r=12,...P (A.2.14)
and the remainder of the solution is obtained by application of equations (2), (3), (4), (5), (7), and (8).

Load control, Option 1. The homogeneous boundary conditions are given by

Ng. =0
T 0 (A.2.15)
&6, =
The following equations are applied:
= 5285t 5384 (A.2.16)
2
§2 + 51853
NyG, = (84— 818, )15, (A.2.17)
(&)p = KNy /(A2 + (TF), - R, Pp=12,..,P) (A.2.18)
and the remainder of the solution is obtained by application of equations (2), (3), (4), and (5).
Load control, Option 2. The homogeneous boundary conditions are given by
Ng.=0
NEGT =0 (A.2.19)
¥Gr—
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The following equations are applied:
€, = 54/5) (A.2.20)

(eh)p=(TF)p—Rpe,T P=12,..,P) (A.2.21)
and the remainder of the solution is obtained by application of equations (2), (3), (4), (5), and (8).
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APPENDIX B: ORTHOGONALITY OF THE DISPLACEMENT SHAPE FUNCTIONS

In this appendix, the equations goveming orthogonality between various shape functions sets are
presented. First, the orthogonality condition satisfied by the buckling eigenfunctions (referred to in the
following as buckling "modes”) is developed. Second, the condition needed to enforce orthogonality
between the buckling eigenfunctions and the second-order displacement fields is established.

B.1 Orthogonality of the Buckling Modes

The left-hand sides of the buckling equations (equations (2.6.5), (2.6.1b), and (2.6.1c) ) are weighted
by buckling mode components ; v;, and w;, respectively, and integrated over the domain of the structure.
Because each weighted expression is uniformly zero, the integral the of weighted expressions must also
be zero. The following equation is thus obtained:

P
z (,[ { UNgox + Niyy) + VN + Nyoy + }“‘NXLV""‘) +
A

AWMy My + My, + NNy Wiy + Ny wi) 1} dA) =0
14

1,2,
1

Phe (81)

Equation (B1) is manipulated by applying Green's Theorem, and invoking the definitions of {€},
and {x}, of equation (2.6.3), and (N;}, and {M} of equation (2.6.2). The following equation can be
obtained:

P
Y ( - j { (NYT(E) + (MAT U} + MIN, (g + W) + Ny w1 } A
p=1 A
b
+ j n,[N,‘_uj + (N, + l,-Nva;,,)vj +Mpx +2M,,,, + liNwa,-,x)wj - Mx,-wj'x] |x= oL dy (B2)
0

+ '[Lny[ny‘uj +Nyv;+ (ZMJWx +M,,, + ?\.,-IVyLwi,y)»t{,- - My‘.wj,,] ly -0 d.x) =0
0
P

The functional form of the buckling modes guarantees that the quantities Ny, v;, w;, and M, are all
identically zero at x=0 and x= L, so the second integral of equation (B2) is zero. The third integral in
equation (B2) can be recognized to be the integral along the length of the structure of the components
of {f.} (see equation (2.6.6) ) weighted by the components of {u,}. Using the local/global transformation
relationships of equations (2.2.1-2) and the definitions of {F*}, the third integral of equation (B2) can
be expressed as

N
Zr{ﬂ"}’w;}dx (B3)
n=1"0

where N is the number of node-lines in the structure. At the non-boundary node-lines, the components
of {Fr} are all zero (equation (2.3.1)). At the boundary node-lines, each component of {F?) is either zero
or its associated component of {Ur} is zero, since the buckling eigenfunctions satisfy the homogeneous
form of whatever conditions have been specified along the boundary node-lines. Thus, expression (B3)
is identically zero.

Equation (B2) has now been reduced to the equation
P
Z( —J { {N‘.}T{ g} + {M‘.}T{Kj} + ki[NxL(v,-,x\g,x + Wi W) + Nyl_w,-,yug,y] } dA) =0 (B4)
p=1 4 P
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Equation (B4) is reexpressed with modes i and j switched, and this equation is subtracted from equation
(B4). Terms are eliminated from the resulting equation by recognizing that:

(N tgj) = (N) (e

T (BS)

M} () = (M} ()
The following expression of the orthogonality of the buckling modes is thus obtained:
P
i=1,2,..
M=%y ( J LN ingos + W) + NyLW-"ij-y]dA) =0 -1 (B6)
p=1>"4 P
A sct of eigenfunctions can be obtained which satisfies the orthonormality condition
P

Z ( J; [N, (ingve + WingWop) + NyLw,-,ywj,y]dA) =0, (B7)
p=1 14

where §; is the Kroniker delta function, and &; is a constant which depends on how the eigenfunctions
are normalized. Condition (B7) follows automatically from equation (B6) for eigensolution pairs which
have different eigenvalues (A, # A). If A=A, but longitudinal halfwave numbers m; and m; are different,
then equations (B7) is satisfied by virtue of the x-dependence of the integrand. If A; = A; and m; = m; (for
i #J), an orthogonal set of buckling modes can be generated using the Grahm-Schmidt orthogonalization
process.

An altemate expression of the orthogonality condition (B7) is developed here. By applying Green's
Theorem to equation (B7) and eliminating boundary terms which are known to be zero, the following
equations is obtained:

P
Z( - L[vj(Nva‘-,u) + WAN Wige + NyLwi,yy)]dA) + J;Ln,N,GL\P;'Wj" | y %dx =84, (B8)
p=1 P

where Ny, is the unit global y-normal in-plane load, n, == 1 indicates the direction of the global edge-
normal unit vector, and n, and n, are the index numbers for the two boundary node-lines. The second
integral of equation (B8) is zero if the following condition is met:

NyG,_ = 0
-or- (B9)
[¥Y'=0 -or- W'=0] (n=n,n)

The above condition is violated only if a panel has side-edges which are both i) unrestrained both with
respect to out-of-plane deflection and out-of-plane rotation, and ii) subjected to y-normal in-plane load-
ing; commonly encountered configurations generally do satisfy equation (B9). If it is assumed that the
conditions of equation (B9) are satisfied, the orthogonality condition of equation (B7) has the following
equivalent form:

P
2 (J;[vj(Nvai,n) + WiN, Wiy + NyLw,',yy)]dA) =-— 8,-ja‘~ (B10)
r=1 P

B.2 Orthogonality Between the Buckling Modes and the Second-Order Fields

Assume that it is desired to enforce orthogonality between each second-order displacement field
{u;} and each buckling mode {u). In the orthogonality condition for the buckling modes, equation (B7),
replace {u;} with {u;):
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h-]

,j=1,2, ..

> ([ VGt + wytio + Ny Jaa ) =0 I ) B11)
A *k=12,..)

pP= 14

By applying Green's Theorem to equation (B11), cancelling boundary terns that are identically zero, and
assuming that equation (B9) is satisfied, equation (B11) can be converted into two alternate forms:

P
D (L[v,‘(Nva,.,,n) + WlNy Wi + N,Lw,-j,,,)]dA) =0 (B12)
p=1 p

P
- 2 (J [v,-](Nvak.n) + w,-j(NXka,u + Nywayy)]dA)
p=1 "4 P

P b
+ z (I nl'NxL(V"jva + W,'jwk'x) |z —oL dy) =0
p=1\7°

14

(B13)

Functions v; and w; do not necessarily go to zero x =0, L; however, according to the nominal boundary
conditions, the transverse displacements v and w should be approximately zero at x =0, L. Assume that
the solution procedure used to compute {u;} is successful in assuring that this boundary condition is
approximately satisfied, so that the boundary term in equation (B13) can be neglected. Equation (B13)
then becomes

P
> (L[v,-,(N,ka,n) + WifNy Wioe + N,ka.,,)]dA) =0 (B14)
p=1 14

Thus, equations (B11), (B12), and (B14) are equivalent expressions for orthogonality of the functions
{u;} with respect to functions {i}.
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APPENDIX C: AN EXPANSION OF &n,
In terms of the notation used in equations (2.8.29-30), 8%, can be written as
A AL
dm3 = 89.9,9,(Cyje + ACij) (&)

for the case of a perfect structure. In order to keep the following derivation manageable, attention is
limited to the case where displacement control is used for the in-plane loading (CONTRL='D' in Table
1), and where coefficients B; (i=1,2,...) appearing in equation (2.6.12) are zero. With these re-
strictions, equation (C1) can be expressed in terms of "primitive" coefficients as

8’ = 8qq;q[ 2CE+ Clp + MChy + 2C;)] (C2)

The primitive coefficients have the following definitions:

P P
Cj= Z(j(wk}’{eij} + {MMK.-,-})dA) Cie= Z(j {NL}T{e.-,-k}dA) €3
p=1 VA p p=1 " p

where {N.} is defined in equation (2.5.3), {N;} and {M;} are defined in equations (2.6.2), (g;} and
{x;} are defined in equations (2.7.3), and {€;} is defined in equation (2.8.6).

Through applications of Green's theorem and cancellation of boundary terms at the x-normal ends
which are known to be zero (because of the function forms of {%} and {u;}), the following two equiv-
alent expressions are developed for C;;

Ch= - [<uy LNY>+ % <, N(Np 1)>]
P b
+ 2 (J; n,[nykv;j + (M, + ZMm,y)w;j] Ix oL v
p=1

+ J-L"y { [Naygt + Ny + QM oz + My, I =~ My ;5]
0

1
+t> ENytiyth + Ny W + Ny 3w, } |y= 0b d") (4
P

= =<y, L(N‘j)>

P b
+;(Ln,(-Mx,-,Wm)|1=0L &

+ r"y[ Noyjthe+ Ny i+ QMoo+ My Wi~ My w11 dx)
0
P

where the inner products and operators which appear are defined in equations (4.2.1-3). Similarly, the
following two equivalent expressions are developed for Ciy:

L
Cijk

— <ujk, N(NL, u‘)>

P b
+ Z (J(‘) anxL(vivxvjk + wi’x“{ik) Ix=0,L d}’ + -[)LnyNyLwivyM)jk | y=0b dx)
p=1

P
- <u, N(NL. ujk)> + 2 (J’LnyNyijbyWi | y=0b dx)
p=1\"0 14
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Equation (C2) is evaluated using equations (C4) and (C5). For C,‘, the first form in equation (C4)
is used, and for Cj, the second form is used. For Ch, the second form in equation (C5) is used, and for
Cia, the first form is used. Terms on the y-normal boundaries of plate strips are transformed to refer to
the node-lines and global coordinate directions, and the contributions to the generalized node-line force
resultants are summed, where appropriate. The following equation is obtained:

O3 = 899k { — <uis LIN;) + NN, 1)) + AN(NL, w)> — 2<u, L(N) + AN(N, u)>
P b N
+z(j m(~Mwi)| o, dy) +ZJ’L{U;'}T{F,-’;]dx
pP= 1 0 P n=1 0

P b
C6
z ( J; 2L VN, + AN Vio) + WM, + 2M,, o + A wed 1, os dy) %)
p=1 p

N
+ Zfzwg}rm’;}dx +200~ M)LL";NycLWL"*’: o, 2 }
n=1

Several simplifications are made to the above equation. First, the integrals containing (U7}, {Uj},
{Fa}, and {F{} are deleted, because the homogeneous node-line boundary conditions specify that one
or the other term of each product is zero. Second, while the functional form for {u;} does not guarantee
it to be so, it is assumed that at x =0, L the quantities M.;, v;, and wy; are approximately zero (consistent
with the buckling mode characteristics M, =v;=w,=0 at x=0, L). This eliminates the integrals at the
x-normal ends of the structure. Third, the structural configuration is assumed to satisfy Appendix B
equation (B9), thus eliminating the integral at the boundary node lines n, and n,. (This assumption states
that the configuration does not have a free y-normal edge with y-normal in-plane loading.) Finally, the
buckling equations as written in equation (4.2.5) are used to further simplify the second inner product
in equation (C6). The following equation is obtained:

oy = 89,914, { -<u, [N + % NN, u) + % NN;, w) + AN(NL, u) 1>
- 2(1 - l,,_)<u‘j. N(NL, uk)> }

cn

where the expression [ gq.N(M, 4)] of equation (C6) was manipulated to obtain symmetry in indices j
and %.
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APPENDIX D. DESCRIPTION OF THE NONLINEAR SOLUTION STRATEGIES

D.1. Form of Equations Governing Equilibrium

It is assumed that the total potential energy of a structure can be expressed in the following algebraic
form;

t=7n(g, o, B)
=7, +qdA;+ oA’ + BAP) + g g /A, + oAl + BAP (D1)
+ 49 A+ 0AG + ﬁASk) + Q4 Ay + 0ATy + BASY)

where summation over i, j, k, and / is implied, g is a vector of generalized coordinates, o. and B are
generalized load parameters, the sub- and super-scripted coefficients A are constant, and the term &, has
no dependence on the generalized coordinates. It is assumed that the generalized coordinates and load
parameters in equation (D1) have been normalized so that they take on values of order of magnitude
unity in the course of an analysis. The method described here is not limited to total potential energy
expressions with two load parameters and fourth order terms; these specific characteristics are adopted
for demonstration purposes.

The equations goveming equilibrium are obtained by imposing a stationary total potential energy
condition, expressed as

f(g,0,8)=0 (i=1,2,..) D2)
where
on
fi=5E
dq;
= (B; + 0B + PBP) + q(B; + aBY + BBE (D3)
+qq(B. + 0‘3;1: + BBSD +4199(Bjju + 033‘u + BBgu)
The newly introduced coefficients appearing in the above equation are given by, for example,
BizAi Bl']'szl:ik+Ajik+Ajb' (D4)

The two load parameters & and B can be controlled asynchronously using a single load parameter
A. A series of K load ranges is specified in terms of target values for o and B: (0,0), (cu, B, (0w, Bo),
.. » (O, Br). Over the k* load range, o and B vary linearly with A as A increases from O to 1:

ay - “k-l)+x(°‘k"°‘k-') 0<A<1 D5
() - G, Be~ By ®>
For the £* load interval, the equilibrium equations then take the form
g 0=+ A-Cix ) +q(C;; + xcib +49(Cij + xci?lz) + 4 g (Cijus + )“C;'kl) (D6)
=0 (i=12,...M)

where for example,
C.=B;+oy_; B +p,_, B

a D7
Cl = (- o) BE + (By— Py p) BP

and where it is assumed henceforth that a finite basis of M generalized coordinates is in use.
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D.2. Arc-Length Control Method

The implementation of the Riks-Wempner arc-length control method described here was guided in
large part by the presentation given in [D1). Concepts presented in [D1] are also used here in a proce-
dure for locating and classifying critical stability points.

D.2.1. Arc-length parameter "s". Let (§,A) be a known solution to equation (D6), and let
(@ +&, A+ 8) be a new solution which is sought in the vicinity of the known solution. The new solution
satisfies the equation

[@+EA+8)=0 (@(=1,2,..,M (D8)

The independent parameter s is introduced, so that § = g(s) and A = A(s). Parameter s is the arc-
length measure in (M + 1)-dimensional space for an equilibrium solution path, and is govemed by the
equation

Gig+Ai=1 (D9)

where summation over j is implied, and where §; = dg/ds and A = 9\/ds. A Taylor series expansion about
the starting solution is used to obtain an expression for the incremental solution (€, 8) in terms of the
an arc-length increment As:

E=gAs+O(AsD) ,  8=AAs+O(Asd) (D10)
D.2.2. Determination of the derivatives (g, A). By expressing each equation of equation (D8) as a

Taylor series expansion about the solution (g, A), applying the substitution of equations (D10), and taking
the limit as As approaches zero, it can be shown that [D1]

D;¢+D}A=0, (i=1,2,..,M) D11)

In equation (D11), D; is the tangent stiffness matrix, given by
of; - - - - - -
RICAN
where, for example,
and vector D} is defined by
s_ Of; A A A A
D/ = w =C +qC; +qq.Cii + 994/Ciju D14)

@n

The derivatives (g, A) are determined by arbitrarily specifying one of the M + 1 unknown values, solving
for the remaining values using equation (D11), then scaling the solution so that equation (D9) is satisfied.
The values (7, A) thus obtained are ambiguous to the extent of a factor + 1. For a starting solution
(A=0), X is positive. In a solution stepping procedure, it is assumed that the direction of the vector
(7, A) does not change radically between successive solutions, so that at the n* equilibrium solution
(@, A, the sense of the vector (g, A") is determined by the following requirement:

R R Yl N (D15)

The use of this simple technique negates the criticism of the arc-length control method, issued in [D2],
that the sign of A is ambiguous.
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D.2.3. Solution stepping using arc-length control. Using equations (D9,10) it can be determined that
for a sufficiently small increment As the following approximate relationship holds:

As = g+ 5 ©16)

where summation over j is implied. Arc-length control is imposed by specifying the increment As from
the n* solution to the (n + 1)* solution, and assuming that the approximate relationship of equation (D16)
is an exact one. The solution is then governed by both equation (D8) and equation (D16). Newton-
Raphson iteration is used to determine the new solution in the following way. Where (7, A*) denotes
the r* estimate of the new solution, the iterative solution procedure can be written as

(ar+l,xr+l)=((7r, ;»’)+(A(7’+|,A}yr+l) (D17)
where the correction (A7 *!, A\'*!) is obtained by solving the linear system of equations

Djag*! + (DY ANt = —R! (i=1,2,..,M) (D18a)

Gag !+ AAN*H! = As—[4(g - ¢ + AN -AY] (D18b)

where matrix Dj and vector (D) are evaluated at (F, A7), and Ry is the residual error vector for the r*
estimate:

RI=f7.\) (D19)

D.2.4. Stability criterion; properties and classification of critical points. The following eigenvalue
problem is evaluated for use in assessing the stability of an equilibrium solution:

([D1-w,l1D)(e") = (0} *k=1,2,..,M) (D20)

where [ D] is the tangent stiffness matrix and [/] is the identity matrix. Eigenvalues o are assumed
to be ordered according to increasing value. When all eigenvalues are positive, the tangent stiffness
matrix is positive definite, the total potential energy is a local minimum, and the equilibrium state is
stable. At a critical stability point (a limit point or bifurcation point) the first eigenvalue @, is zero.
Consider , to be a function of the path parameter s, and let s* be the value of s at a critical point. The
critical stability point then has the property

0,(s*)=0 (D21)

A limit point has the property

AMs*) =0 (D22)
whereas a bifurcation point has the property [D1]:
B\(s*)=0 (D23)

where B.(s) is defined as
BU)=@D))| k=12, (D24)

It is noted that at a limit point, the path tangent g is a scalar multiple of the eigenvector ¢'. This can
be seen by considering equations (D11,20-22).

D.2.5. Detection and classification of forward critical points. The criteria given in equations
(D21-23) for identifying and classifying a critical point apply only at the critical point itself. A method
is described here for detecting and classifying a "forward" critical point, meaning one which is being
approached in the process of solution stepping. The values of ®,, A, and B, are computed for each dis-
crete equilibrium solution. In the vicinity of the most recently obtained solution, the three functions
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wi(s), A(s), and B(s) are approximated as quadratic functions of s by fitting curves to the parameter
values from the three most recently obtained solutions. The equations ,;(s*)=0, A(s*)=0, and
Bi(s,*) =0 are then solved to obtain extrapolated values for s*, s*, and s,*, which are the values of s
at the next forward critical point, limit point, and bifurcation point, respectively. Each of the parameters
s*, 5*, and s,* is set equal to the smallest positive real solution of its associated quadratic equation, if
such a solution exists; otherwise the parameter is set to a large, positive real number.

Define As*, As*, and As,*, to be the incremental values from the current value s to the values s*,
s*, and s5,*, respectively. If, As* approaches As* as a critical point is approached (ie. as As* approaches
zero) then the critical point is classified as a limit point, and if As,* approaches As*, the critical point
is classified as a bifurcation point. (A critical point may be both a limit point and a bifurcation point.)
In order to evaluate these trends, it is necessary to compute several equilibrium solutions which approach
the critical point without overshooting it. To do this, Riks [D1] suggests selecting As to be As = cAs*
(where ¢ is a factor less than one and greater than zero) until the extrapolated value As* is smaller than
a specified cutoff value. Because the critical point can be approached only to within some finite incre-
ment As*, there is some uncertainty involved in evaluating the trends of the extrapolated values. The
approach used here is to inspect the ratios (As*/As*) and (As,*/As*) evaluated at the smallest value of
As* used. If a ratio has an order of magnitude of unity (a value less than, say, 3) then it is assumed that
the associated values are converging. The use of quadratic interpolation functions has been found by the
author to provide a considerably more robust method of locating critical points than when the linear
interpolation functions suggested in [D1] are used.

Plate problems have been encountered in which the parameter B, is uniformly zero along a
postbuckling equilibrium path. In this case the extrapolation procedure described for determining As,*
is not appropriate, and any critical point encountered is a bifurcation point.

While equation (D21) defines a critical stability state (@, =0), other singular points may be en-
countered where the first eigenvalue , is negative, but another eigenvalue ®, is zero for some value &
greater than one. The criteria of equations (D22) and (D23) can still be used to classify the singular point
as a limit point and/or bifurcation point, except that B, is used in equation (D23) rather than B,.

D.2.6. Computing the solution at a critical point. If it is determined that a critical point is not a
bifurcation point, then the critical equilibrium solution (a limit point) is determined by selecting As of
equation (D18b) equal to the extrapolated value of As*, once the latter measure is sufficiently small, and
using the iterative solution procedure already described [D1]. If it is determined that a critical point is
a bifurcation point, arc-length control is not well suited for centering on the critical point because of the
solution branching. It is the author's experience that it is possible to approach a critical point quite closely
using arc-length control, to the point that the value of As* is very small compared to unity. It thus seems
sufficiently accurate to perform a simple extrapolation to determine the bifurcation point by using a
first-order approximation of equations (D10) with As = As*.

D.3. Control of Solution Branching with Thurston's Method

This section describes an implementation of Thurston's method [D3], used for analyzing solution
branching in the vicinity of a bifurcation point which has been identified and located using the proce-
dures described in Section D.2. In [D3], Thurston's method is applied to the differential equations
goveming equilibrium before any necessary discretization of the structural response has been performed.
Here, the discretization has already been performed in obtaining equations (D6) which govern equilib-
rium, and Thurston's method is applied directly to these equations.

D.3.1. Transformation of the equilibrium equations. Let (7, A) be a known exact or approximate
solution to equations (D6), and let (7 +§&, A + 8) be a new solution which is sought in the vicinity of the
known solution. The latter solution is govemed by equation (D8). By expressing equation (D8) in the
expanded form of equation (D6) and grouping terms based on their power in & and §, the following
equation is obtained:
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(D, + ;SD“’)1 +2§,<D%803) + 4D+ D) + EEE Dy + 8C) = 0 025)
t1=1,2,..,

where Df and D; are given in equations (D14) and (12), respectively and

D;=f(q. M)
5

D= Cjj + qUClie + Cly) + G Cyy + Clijg+ Clip)

ng = C;k + QI(Csu + Ci?u + C;}k) (D26)
Dyjx = Cije+ qCijus + Ci + Cigyd) + ADJy

Djjy= Cyjy+ AChy

The following eigenvalue problem is derived from the linear terms of equations (D25):
Co1+8[D°DieM =10} . k=12,...M D27)

where [D] and [D*] are the matrices of coefficients D; and D}, respectively. Equation (D27) differs
form the eigenvalue problem of equation (D20) by the presence of the matrix [ — D*] in place of [/].
The eigenvalues &, are numbered in order of ascending value. When all eigenvalues are distinct, the
eigenvectors form an orthogonal set, and the eigenvectors are scaled to meet the following
orthonormality condition:

07'Dj6} = - 8, D28)
where O; is the Kroniker delta function. For multiple eigenvalues which coincide, the associated
eigenvectors must be orthogonalized before normalization, using, for example, the Grahm-Schmidt
orthogonalization procedure [D4].

The incremental solution £ is expressed as a series in the eigenvectors, &
E=8' (D29)

where summation over k is implied, and the coefficients @ (k=1,2, ..., M) are initially unknown. The
following relationship is established through the use of equations (D27-29):

07 (D;+ DYt =-(6-8,)a, (m=1,2,..,M) (D30)

where summation of repeated indices is implied except for index m. Equation (D25) is now restated,
eliminating parameters & using the substitution of equation (D29). For each value of
m (m=1,2, .., M), the i* equation is weighted by 87 and the resulting expressions are summed over
i. Equation (D30) is used to simplify the equations thus obtained, providing the following transformed
equations:

3n(8 — 8,) = (Epy + 8ED) + @y, (Epppy + OES,) + 4,0, a(Eypys + O, ) 031)
m=12,...M

where summation over n, r, and s is implied, and the new coefficients are given by

8 — S nAT 5
(E,p» E,aa-e,-"'w.-, DY) Epnr » By = 87070(D, Doy

i (D32)
(Emnrs’ Emnrs) = ei ej e;e.;(DUH’ C";;’d)

where summation over i, j, k, and / is implied.

D.3.2. Analysis of solution branching. The form of equations (D31) is a generalization of the form
of equations obtained by Thurston in [DS5] for the analysis of compressively loaded plates, so comments
made in [D5] will be used to guide the use of equations (D31). Near a limit point or an isolated
bifurcation point, one of the eigenvalues, say 8, will be close to zero and much less in amplitude than
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the remaining eigenvalues. In the vicinity of the known solution, both § and the quantity (5 — 8,) are
small. With this in mind, and in view of the form of equations (D31), Thurston hypothesizes that g, will
be much larger in amplitude than the remaining M — 1 coefficients a,.. An approximate solution is thus
governed by equation number ¢ of equations (D31) with only the variable parameters q, and & retained.
By specifying a value for a, the corresponding value of the load increment & can be computed directly.
Solutions for both positive and negative values of g, are generated in order to identify both solution
branch directions.

When two eigenvalues §, and 3, are both very close to zero (such as near a point of approximately
simultaneous buckling in two different mode shapes) the reasoning used above is extended to suggest
that an approximate solution is governed by two equations, numbers ¢ and v of equations (D31), with
only the variable parameters a, a,, and 8 retained. The solution procedure used here is to specify a small
numerical value for either g, or a,, solve the two equations for §, and then equate the two expressions
for 8. A fifth degree polynomial equation in the remaining unknown parameter (a, or @) is obtained. A
polynomial root solver is used to determine all real solutions to the polynomial equation, then the cor-
responding values of & are computed. Solutions are generated for both positive and negative values of
the specified parameter (a or a,) in order to identify all solution branch directions. The analysis of si-
multaneous bifurcation in three or more modes has not been attempted as a part of this work.

The set of approximate solutions obtained using a one- or two-mode branching analysis are assessed
for physical significance in order to guide the selection of a particular solution branch to follow. The
approximate solution on the selected branch is then refined using the following procedure. The approx-
imate post-bifurcation solution is known in terms of a value & (henceforth denoted &%) and one or two
non-zero parameters an. Using equation (D29), the corresponding approximate solution £? is generated.
The arc-length increment corresponding to (£*, &) is given by

and the approximate path derivatives along the new branch are given by
g=tlias’ A=8"/As® (D34)

The arc-length control method is used to refine the solution by taking the extrapolated critical-point
solution (g*, A*) as the starting solution, (g, A) of equation (D34) as the path tangent, As® as the arc-
length increment, and (g* + &%, A* + &) as the initial guess for the new solution.
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USER INSTRUCTIONS FOR THE NLPAN COMPUTER PROGRAM
Introduction

This document provides user instructions for the NLPAN code as it is currently configured under the
Unix operating system. Detailed line-by-line instructions for preparing input are preceded by discussions
of general aspects of running NLPAN, general aspects of specifying geometry, various operating modes
of NLPAN, convergence considerations, and possible problems which may be encountered. Finally, some
example input files are listed. The user must be familiar with PASCO input procedures, because a PASCO
input file must be formed for the structure to be analyzed. PASCO input requirements are described in
[E1], and are not included in this document.

General Aspects of Running NLPAN

All FORTRAN source code for NLPAN resides in a single sub-directory, along with a 'makefile’ used
to compile and link the program. These files can be copied to a user’s own account if it is desired or
necessary to alter the program in order to increase array sizes, generate specialized output, etc..

The source code for PASCO has been incorporated into the NLPAN code, and a conventional PASCO
input file is used to specify much of the configuration geometry for an NLPAN analysis. However the
PASCO source code has been altered and reduced in its capabilities based on the needs of NLPAN, and
thus PASCO can not be used as a stand-alone program from within NLPAN.

NLPAN runs entirely within computer memory, with the exception that a couple of data storage
functions use disk files. This limits the numerical size of problems which can be considered. All
dimensions for data arrays are set in a PARAMETER statement in the file *param.f’. A single mass
storage array is apportioned as needed to store many large arrays without wasted space. The dimension
of the mass storage array is set by parameter MMASS. When dimensions have been exceeded, error
messages are printed. The dimensions can be adjusted in the PARAMETER statement of file *param.f’,
and then the program is recompiled using the 'make’ command with the provided 'makefile’. The standard
output file 'nlpan.out’ includes a listing of dimension NMASS, which is the length of the mass storage
vector required for a particular problem.

Depending on the problem size, NLPAN execution typically takes from a few seconds to a few
minutes to run. The execution time is approximately proportional to the complexity of the cross section
modelled (in terms of the number of plate strips and the number of discretization intervals on each plate
strip) and approximately doubles with each additional VIPASA buckling mode included as a shape
function.

NLPAN is executed interactively from within a data sub-directory containing the input files for a
particular configuration to be modeled. The run command is ’(path)nlpan’ where '(path)’ is the path
specifying the location of the executable file. The Unix command 'alias’ can be used to define a simple
input string, such as "nlpan’, which initiates program execution without the need to type the complete path
each time the program is run. The data sub-directory must contain three input files:

'pasco.in’ PASCO input file
‘nlpan.inl’ Basic NLPAN input including modelling options and geometric data.
‘nlpan.in2’ Imperfection amplitudes and control parameters for the final nonlinear analysis.

All working files and output files are written to the data sub-directory using generic names, so it is natural
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10 use a separate sub-directory for each configuration analyzed. The standard output files are:

’pasco.out’ Output from PASCO
"nlpan.out’ Standard output from NLPAN, including basic load-step output
"nlpan.outr’ Output of analysis-control parameters used in solution stepping

Output files are overwritten with each successive run, so files must be renamed to be saved. Additional
output files are generated as selected by the user using parameters described in the section "Line-by-Line
Input Instructions.” Several files are created for passing data between different program units, including
'stiff.in’, modes.in’, ‘reverse.in’. If intermediate calculations are saved for restarting, the files
"nlpan.binstor’ and ’nlpan.binind’ are created.

General Aspects of Specifying Geometry

The first step is to form the PASCO input file, which is given the name 'pasco.in’. The following
limitations are placed on the PASCO model:

1) The configuration must be defined using both HCARD and ICARD input, with ICREP=1 and
NOBAY=1. This suppresses substructuring in the VIPASA buckling analysis so that the buckling
modes returned from VIPASA include information at all of the node lines.

2) Only in-plane normal loads NX(1) and NY(1) may be specified. The PASCO features of shear
loading, pressure loading, load eccentricity, bowing imperfection, and vibration frequency should not
be used.

3) PASCO input data related to design optimization procedures are not used.
4) The following PASCO input parameters should NOT be present: MINLAM, NEIG, and NLAM.
5) Set CONV1=50000., FREQ=0., MAXJJJ=0, LINK=1

In defining the PASCO geometric model, a cross sectional configuration is defined in terms of a set
of numbered plate strips and a set of numbered node lines. An example of a model with 7 plate strips and
6 node lines is shown in Figure E1(a). Each plate strip has a local Y coordinate axis (indicated by arrows
in Figure E1(a)) originating at one of the edges of the strip. Each plate strip may be rotated by an angle
MU relative to the global coordinate directions, and a plate edge may be offset from its associate node
line, as specified by the values EY and EZ defined in Figure E1(b). The connectivity of the model and
the rotation angles MU and offset measures EY and EZ are not passed automatically from PASCO to
NLPAN, and thus the information must be repeated (in different form) in input file ’nlpan.inl’. The
connectivity is specified by using the NOD array in 'nlpan.in1’, which lists, for each plate strip, the i.d.
numbers of the node lines at Y=0 and Y=B, respectively, where B is the width of the plate strip. The array
NOD, the angles MU, and eccentricity measures EZ for the configuration of Figure E1(a) are listed in the
figure (EY is zero for all plate strips). The details of specifying these parameters are described in the
section "Line-by-Line Input Instructions." The NLPAN input files for the configuration of Figure E1(a)
are included in the section "Example Input Files." The following data are passed automatically from
PASCO to NLPAN: plate-strip widths, global unit loads, laminate configurations, reference length and
width, and material properties including thermal expansion coefficients.
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(a) An example PASCO/NLPAN cross-sectional representation showing
plate strip numbers (boxed), node-line numbers (circled), global and local
coordinate directions, and geometry definition parameters.
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(b) Orientation of the edge of a plate strip relative to a node line.

Figure E1. Specification of cross-sectional geometry.
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One important modelling detail requires special discussion. In both PASCO and NLPAN, a set of
plate-strip properties is stored only for unique combinations of the following three parameters:

i) wall (laminate) properties

ii) plate-strip width

iii) unit in-plane loads
In NLPAN, the user must use the ILBWAL(IP) input to assign to each plate strip the index number of
this property set, and thus the user must anticipate the indexing used by PASCO. This is not difficult.
Starting with plate strip # 1 and proceeding through the entire set of plate strips, assign index numbers
ILBWAL starting with 1. If the trio of properties of a plate strip match the values encountered on a
previous plate strip, use the previously assigned value of ILBWAL, otherwise assign the next new value
of ILBWAL. The vector ILBWAL(IP) for the configuration of Figure E1(a) is (1,2,2,1,3,3,4), where the
laminate of the stiffener flanges is different from the laminate of the skin. On occasion, PASCO does not
recognize maiching plate strips. A FORTRAN error results if there is a discrepancy between the PASCO
indexing and the ILBWAL input. The file 'modes.in’ should be inspected. At the top is variable NLBWAL
which is the maximum value of ILBWAL used by PASCO. Lines near the top list parameters ILBW, IW,
B, NXL, NYL. IW is the wall (laminate) index number, ILBW is the index referred to by ILBWAL(IP),
B is the strip width, and NXL and NYL are the unit loads. These values reflect the indexing used by
PASCO.

In the PASCO input file, the four boundary condition components at the node-lines are specified in
the order dW/dY, W, V, and U. The boundary conditions must be specified again in input file 'nlpan.in1’
using the BCVEC parameter. The components of BCVEC are reversed compared to PASCO: (U : Fx),
(V : Fy), (W : Fz), and (dW/Y : M).

NLPAN has features for modelling boundary conditions other than simple support at the longitudinal
ends. Axial displacement constraints can be imposed using NCU/IPCU/YCU input, and slope constraints
dW/dX can be imposed using NCW/IPCW/YCW input. The generalized displacement constraints are
satisfied exactly at discreet points; care must be taken not to over-constrain a problem. Rotationally elastic
support can be modelled using either NSPU/IPSPU/YSPU/KSPU or NSPW/IPSPW/YSPW/KSPW input.
The options provided for modelling end-support are not intended to enable exact modelling of boundary
conditions at the longitudinal ends, but are rather intended to simulate the effects of the end support
conditions on the global behavior of the structure. Axial displacement constraints are used in the example
input files listed at the end of this document.

NLPAN Operating Modes

NLPAN has several special operating modes, and to understand them, it helps to understand the
general stages of the NLPAN analysis:

1. Computation of the linear, unbuckled response to the unit in-plane loads.

2. Computation of VIPASA buckling eigensolutions, and selection of the buckling mode set for use
in the nonlinear analysis.

3. Computation of the shape functions for the second-order displacement fields.
4. Calculation of the coefficients for the nonlinear algebraic equations govemning equilibrium.

5. Solution of the nonlinear algebraic equations governing equilibrium.
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Linear solution pre-processor. NLPAN provides the ability to specify both global in-plane load
components in terms of either load measures or displacement measures. If it is desired to use the two
edge-normal load components (named NX(1) and NY(1) in ’pasco.in’) then PASCO will compute the
linear pre-buckling solution, which is passed on to NLPAN. If it is desired to specify the unit end-
shortening and/or the unit width-shortening, NLPAN is used as a pre-processor to determine the equivalent
loads NX(1) and NY(1) required for PASCO input. This is done by setting ILNPRT=2 (pre-processor
mode) in file 'nlpan.inl’ and providing the appropriate values for ILSET, NXGL, NYGL, EPXL, and
EPYLG in 'nlpan.inl’. NLPAN then computes the corresponding values NX(1) and NY(1), prints these
values to file 'nlpan.out’, and halts program execution. The provided values can then be put into 'pasco.in’
(using a text editor) for use by PASCO, in order to get the proper pre-buckling state for the buckling
calculations. ILNPRT should then be set to zero for the subsequent NLPAN run.

For multiply-connected cross-sections, the PASCO linear solution is computed without strict
enforcement of displacement compatibility between multiple plate strips. By setting COMPAT="Y" in
‘nlpan.in’, the linear solution can be determined which satisfies displacement compatibility for
configurations with co-planar plate strips, such as skins with attached flanges. First set ILNPRT=2 (pre-
processor mode) in 'nlpan.in’. This will cause the PASCO input parameters NX(1), NY(1), and FNY(D)
to be printed to file ’nlpan.out’, and NLPAN program execution will terminate. (If NY(1) is zero in
"pasco.in’, then NLPAN will also specify a small non-zero value NY(1) for use in PASCO.) The values
NX(1), NY(1), and FNY(I) are then added to pasco.in’ using a text editor, and ILNPRT should be set
to zero in 'nlpan.in’ for subsequent runs. The linear solution obtained using this method may not be a true
equilibrium solution because of the presence of unbalanced moments along the node lines.

Review and selection of VIPASA buckling solutions. The set of VIPASA buckling modes used by
NLPAN is specified using the parameters NMUSE, MHIN(I), NSOL(I), ISOL(1,J), FORCE, and SYMSTR.
Features for reviewing a range of VIPASA eigensolutions are available in order to help select which
modes to use. Initially, PASCO is called and instructed to generate the primary buckling solution for each
longitudinal halfwave number from 1 to MSRCH. The eigenvalues are printed to "nlpan.out’ along with
an indication of whether or not the mode shape is symmetric (based on input parameters SYMSTR and
NODSYM(1-2) in 'nlpan.in’.) To inspect these results before further execution, set IHALT=1 in *nlpan.in’.
In order to investigate the characteristics of secondary buckling eigensolutions for selected halfwave
numbers, set IHALT=2 in 'nlpan.in’. NMUSE and MHIN(I) are used to specify which halfwave numbers
are explored, and for each halfwave number MHIN(I), the number of solutions generated is equal to twice
the maximum index number specified in ISOL(I,NSOL(I)). Both eigenvalues and symmetry indicators are
printed to 'nipan.out’ for all modes generated, and program execution is halted.

Users may want to set up strategies for automatically selecting mode sets based on particular criteria.
The appropriate place for this is subroutine PRIMAR in file ’primar.f’. A strategy implemented by
Christine Perry for a certain class of problems can be found there and perhaps modified to suit the user.

Restart procedure. The bulk of the computational effort of NLPAN (in the absence of extensive post-
processing) goes into the stages which culminate in the computation of the coefficients of the nonlinear
algebraic equations (stages (1) through (4) listed above). The user may choose to have the program store
the results of all calculations made up 10 this point. This allows an unlimited number of subsequent runs
to be made (using the stored information) in which the user may vary the shape imperfection, the load step
sizes, the asynchronous load strategy, and other parameters affecting the nonlinear solution strategies. The
operating mode is selected by answering the following prompt which appears on the screen at the start
of the program execution:

ENTER: 1 - NEW START WITH NO SAVE, 2 - NEW START WITH SAVE, 3 - RESTART
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The RESTART mode does not restart a sequence of load/response calculations, but rather begins the
computation of one or more new load-response sequences. In RESTART mode, the program reads the
saved results, followed by input file 'nlpan.in2’. Output to file ’nlpan.out’ begins directly with a report
of the final nonlinear analysis.

If it is desired to suppress the screen prompts, then replace the statement 199=6 with 199=99 in
subroutine NLPAN in source code file 'nlpan.f’ and recompile the program. The restart feature will not
be used. Screen-directed output will be written to file "term.out’.

Special output. During each NLPAN run, output file 'nlpan.out’ is written which contains a summary
of input information, properties of the VIPASA buckling modes, and other basic information about the
model and the analysis to be performed. Basic output for the equilibrium solution at each load step
includes normalized global load measures, modal amplitudes, and a reference deflection value. Output file
"nlpan.outr’ contains a report, at each load step, of the values of various parameters used in the nonlinear
solution strategies. (Definitions of the parameters listed in ’nlpan.outr’ can be found in comment lines in
the beginning of source-code file 'nlanl.f*.) Additional output is available for various stages of the analysis
using print flags ILNPRT, ICOORD, IEFPRT, IQUPRT, INGPRT, and ICOPRT in file 'nlpan.in1’, and
post-processing flags IPDISP, IPSTRN, IPSS, IPQY, IPSRES, and IPPROF in 'nlpan.in2’. The details of
using these flags are described in the section "Line-By-Line Input Instructions."

NLPAN is also capable of creating configuration, buckling mode, and displacement output files which
can be viewed graphically using the commercially available PATRAN computer software by PDA
Engineering of Costa Mesa, California. To create these output files, ICOORP must be set to 2 in file
‘nlpan.inl’. To create the files containing buckling mode-shapes, set IEFPRT=3 in file ’nlpan.in1’. To
create displacement output files, set IPPROF=1 in file 'nlpan.in2’. Additional details regarding the
PATRAN-readable files are included in the descriptions of parameters ICOORP, IEFPRT, NXINT, NEY,
and IPPROF, found in the section "Line-By-Line Input Instructions.” An example of a PATR AN-generated
image of displacement results from an NLPAN analysis is presented in Figure E2 for the case of a unit-
stiffener-cell representation of a T-stiffened panel.

Convergence Considerations

The cross section of a configuration is discretized in order to perform numerical calculations for some
steps of the NLPAN analysis. This discretization is determined by the parameter NINTN or parameters
NINT(I) in 'nlpan.in1’. Increasing the fineness of the discretization improves the accuracy of results, but
increases computer memory requirements and increases program execution time. The convergence of
results with respect to the fineness of the discretization should be considered when using the program.
Convergence is slowest when the transverse in-plane load component NY is non-zero.

The accuracy of the NLPAN analysis is highly dependent on the suitability of the VIPASA buckling
mode set used to represent displacements in the nonlinear analysis. NLPAN program features are provided
to help the user screen the buckling modes for suitability, but the question of which modes to include is
a difficult one. Mode-selection strategies for some cases are discussed in Section 5.5.2.

Possible Problems
VIPASA/PASCO returns buckling mode shapes in terms of the associated generalized displacements
of the node lines of the configuration. The mode shapes are normalized by setting the largest node-line

rotation to 0.1 . For some buckling modes (column type modes) all node-line rotations are very small, or,
in theory, zero. This means that the associated displacements would be infinite in comparison. Experience
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PANELA - TEST PANEL A - THREE BLADE-STIFFENERS, L=20

DISPLACEMENTS AT LOAD STEP 24

Figure £2. Example of the visualization of NLPAN displacement results using PATRAN,
for a unit-stiffener-cell representation of a T-stiffened panel.
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has shown that in practice, there is generally enough numerical error so that displacements are finite,
though they may have amplitudes with an order of magnitude 1x10'°, Mode shapes which have been
plotted for such cases look physically reasonable.

The solution strategies used to solve the nonlinear algebraic equations require the specification of
several parameters to determine step sizes and cutoff values used in strategy decisions. In regions of severe
solution-path curvature or compound solution branching, the solution strategies sometimes misdiagnose
the situation, and issue a confusing series of messages. These problems can generally be eliminated by
adjusting the values of DSNOM, DSFACT, DSMIN, DELQ, or EVCUT in ‘nipan.in2’. As far as what
values to use, some trial and error may be required to obtain meaningful behavior.

Avoid using extremely small non-zero values ( < 0.001 ) of modal imperfection amplitudes QO(I)
(specified in 'nlpan.in2’). Such values tend to create problems of the sort described in the previous
paragraph.

Line-By-Line Input Instructions
In this section, detailed line-by-line instructions are given for the two input files ‘'nlpan.inl’ and
‘nlpan.in2’. The detailed instructions for input file *pasco.in’ are covered in [E1]. See the section "General

Aspects of Specifying Geometry" in this appendix for special requirements which *pasco.in’ must satisfy.

General instructions. The following general comments apply to the line-by-line input instructions, or
to the input files.

1) The contents of the input files must match, line per line, the data sequences described in this section.

2) All input is read by FORTRAN as unformatted input. All input variables must be present, with at least
one space scparating data entries. Integer, floating-point, character, and logical input values must be
written using conventional FORTRAN formats. Characters following the last required input value on a
line are ignored.

3) After all the required input values on a line have been read, the rest of the line is ignored, so that
remaining space can be used for writing comments.

4) Any special output requested using input parameters is written to the standard output file 'nlpan.out’,
except where noted otherwise in the instructions.

5) All CHARACTER input values must be enclosed by apostrophes except for the first record (TITLE).
Example: SYMSTR may be "Y' or 'N’ .

6) The variable type for each input item is indicated under the variable name, using the following
abbreviations:

I - Integer

R - Real

C*n - Character variable of length n
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File 'nlpan.in1’ input lines. (This file is used to specify geometry, and modelling and output options.)

TITLE
C*76

TITLE

A descriptive title used for labeling of the output files.

ICOORP
1

ICOORP

ILNPRT

IEFPRT

ILNPRT IEFPRT IQUPRT

I

N - O

W N -—O

I I

Controls printing of the global y-z coordinates of the model at the discretization
points

No print

Print the Y-Z coordinates of the cross section to file *coords.out’

Create file 'nlpan.neu’ which contains a PATRAN-readable "neutral file" describing
the geometric configuration. This file contains finite-element node and element
definition records, allowing the configuration to be viewed graphically using the
PATRAN computer software. Discretization of the configuration is determined by
input parameters NXINT and NEY(IP) (IP=1,2,....,NPLATE). The file-creation options
for writing PATRAN-compatible neutral results files for buckling mode shapes and
displacements are enabled (see IEFPRT in file ’nlpan.inl’ and IPPROF in file
'nlpan.in2’).

Controls the operation of the linear solution module. See the discussion in the section
"NLPAN Modes of Operation."

Use the global unit loads NX(1) and NY(1) specified in "pasco.in’, and force ILSET
to 1

Pre-processor mode. Based on the ILSET input value, select the two generalized in-
plane load components from the values NXGL, NYGL, EPXL and EPYLG
(described below); write corresponding PASCO input values NX(1) and NY(1) (and,
if COMPAT="Y", any non-zero PASCO input factors FNY(I)) to the file 'nlpan.out’,
for later insertion into ’pasco.in’ using-a text editor. Program execution is halted.

Controls the printing of buckling mode shapes, measured with respect to local plate-
strip coordinate directions except where noted otherwise.

No print.

Print displacements.

Print displacements and all computed derivatives.

If ICOORP#2, then print displacements to file *modes.out’ and halt execution.

If ICOORP=2, then print mode shapes to PATRAN-readable files ‘nlpanMMM .eig’
(MMM=1.2,...) where MMM is the index number of the buckling mode. These are
“neutral results files" (in PATRAN nomenclature) containing buckling-mode
displacements, and are to be used in conjunction with the configuration neutral file
‘nipan.neu’ for graphical viewing of the buckling mode shapes. The displacements
are measured with respect to global coordinate directions. Program execution is
halted.
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IQUPRT

w N -0

Controls printing of second-order displacement fields at discretization points,
measured with respect to local plate-strip coordinate directions.

No print.

Print displacements.

Print displacements and all computed derivatives.

Print displacements to file 'uij.out’ and halt execution.

INGPRT
I

INGPRT

ICOPRT

IPRINT

IPBUG

NXINT

ICOPRT IPRINT IPBUG NXINT

I

—

—

I 1 I

Controls the printing of the coefficients for the expression of global loads NXG and
NYG (computed in subroutine ACALC).

No print

Print values

Controls the printing of the coefficients of the nonlinear algebraic equations
(computed in subroutine CCALC).

No print

Print coefficients

Print coefficients and primitive coefficients

Development use only. Set to 0
Development use only. Set to 0

Required only if ICOORP=2 (creating PATRAN-readable output files). NXINT is the
number of finite elements along a length-wise cut of any plate strip in the structure,
used in producing PATRAN-readable files 'nlpan.neu’, ’nlpanMMM.eig’, and
'nlpanNNN.dis’. This is used for graphical visualization purposes only, and does not
affect the analytical results.

USER
C*5

USER

IHALT

IHALT MSRCH

I

I
Flag used by program developers. Set to *STOLL".

Used to control the generation and display of the VIPASA buckling eigensolutions,
and the subsequent use of the buckling mode shapes in the nonlinear analysis. See
the discussion in the section "NLPAN Modes of Operation."

Proceed with the NLPAN analysis using buckling modes as determined by the input
values NMUSE, FORCE, MHIN(I), NSOL(I), ISOL(I,J)

Compute the VIPASA buckling eigenvalues for longitudinal-halfwave numbers 1
through MSRCH; print the eigenvalues along with an indication of the symmetry of
the buckling mode. Halt execution.

For values of the halfwave number specified by MHIN(I) (I=1 »2,....NMUSE) compute
and print several VIPASA eigenvalues, including an indication of the symmetry of
each buckling mode. The number of modes computed for MHIN(I) is
2*ISOL(I,(INSOL(I)). Halt execution.
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MSRCH

This parameter determines the range of longitudinal halfwave numbers investigated
when THALT=1 (see above). MSRCH must be in the range 0 to 20

0 Investigate halfwave numbers 1 through 20

>0 Investigate halfwave numbers 1 through MSRCH

SYMSTR
C*1

SYMSTR

NODSYM(1) NODSYM(2)
I I

"Y'/’N’ Indicates whether or not the structural cross section is symmetric.

NODSYM(J)  Index numbers of two node lines for which global displacements W can be compared

to detect symmetry of a buckling mode. Used only if SYMSTR="Y"

NMUSE

NMUSE

FORCE

FORCE
C*1

These parameters, along with parameters NSOL, MHIN, and ISOL in following records,
determine which buckling modes (computed by VIPASA) are used in the nonlinear
analysis.

Number of unique values of the longitudinal halfwave-number for which VIPASA
mode shapes will be generated for use.

Affects the selection of VIPASA buckling modes for the longitudinal halfwave-
numbers specified with MHIN(I). In the following description, designate buckling
solutions by the indices (M,]). Solution (M,J) is the J'th solution in the infinite
sequence of solutions (for halfwave number M) which are ordered in terms of
eigenvalue.

'Y’ For longitudinal halfwave number MHIN(), force the use of modes
(MHIN(®),ISOL(L,J))), J=1,2,... NSOL).

‘N’ Input values ISOL are ignored. Use mode (MHIN(I),1). If SYMSTR="Y" and
NSOL(I)>1 then add the next NSOL(I)-1 modes (MHIN(I),N) which match mode
(MNIH(I),1) with respect to symmetry or lack thereof. If SYMSTR="N" use modes
(MHIN®),)), J=1,2,....NSOL(I).

NSOL(1)

I

NSOL()

NSOL(2) ... NSOL(NMUSE)
I I

Number of VIPASA mode shapes to be incorporated which have the longitudinal
halfwave-number MHIN(I)

MHIN(1)

I

MHIN(I)

MHIN(2) ... MHIN(NMUSE)
I I

Longitudinal halfwave-number of a VIPASA mode shape to be used in the NLPAN
analysis
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ISOL(1,1) ISOL(1,2) ... ISOL(1,NSOL(1))

ISOL(2,1) ISOL(2,2) ... ISOL(2,NSOL(2))
ISOL(NMUSE,1) ISOL(NMUSE,2) ... ISOL(NMUSE,NSOL(NMUSE))
I I I

ISOL(1J) Indicates which VIPASA buckling modes to use from the sequence of modes having
longitudinal halfwave-number MHIN(I), where modes are ordered according to
eigenvalue. All input values must be present, but they are only used if FORCE="Y".

NPLATE NNODE
I I

NPLATE Number of plate strips in the model

NNODE Number of node lines in the model

NPOFFS

NPOFFS  Number of plate strips which have non-zero offsets between one (or both) side edge(s)
and the corresponding node line(s).

Conditional - include only if NPOFFS >= 1 :
IP IECVY(IP,1) IECVZ(P,1) IECVY(IP,2) IECVZ(P,2) (I=1)
IP IECVY(IP,1) IECVZ(IP,1) IECVY(IP,2) IECVZ(P)2) (I=2)

IP IECVY(IP,1) IECVZ(IP,1) IECVY(IP,2) IECVZ(P,2) (I=NPOFFS)
I I I I I

IP Index number of a plate strip with non-zero node-line offsets.
IECVY(IP,IE),IECVZ(IP,IE): Integer values used to determine the offset component values. This is
done the same way as in PASCO. The absolute value gives the index number I of a

thickness value H(I) specified in ’pasco.in’, and the sign specifies the direction of the
offset component. IE is the edge number, IE=1 for Y=0, IE=2 for Y=B(IP).
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MUA(P)
MUA(P)

I\-/i.UA(IP)

R

MUA((IP)

SKVEC(IP)

PRVEC(IP)

TUA(IP)

SKVEC(IP) PRVEC(P) TUA(P) (IP=1)
SKVEC(IP) PRVEC(IP) TUA(P) (IP=2)

SKVEC(IP) PRVEC(IP) TUA(IP) (IP=NPLATE)
|

I R

Rotational orientation angle, in degrees, of plate strip # IP in Y-Z plane. Same
convention as PASCO. See Figure E1(b).

Indicator for presence of an initially flat skin which is continuous between the
boundary node-lines.

Plate strip # IP is part of the skin. For the case of overlapping plate strips, such as
a skin/stiffener-flange region, only one of the overlapping strips should be assigned
SKVEC(IP)=1

Plate strip # IP lies off of the skin.

Used for indicating pressure load application and direction. Note: For the case of
overlapping plate strips, such as a skin/stiffener-flange region, only one of the
overlapping strips should be assigned a non-zero value PRVEC(IP)

No pressure load applied to plate strip

Pressure load acts on plate strip in local +Z direction.

Pressure load acts on plate strip in local -Z direction.

Unit value of temperature (the difference from a reference temperature) to be applied
uniformly to plate strip # IP. See the description of parameter HEATA in input file
'nlpan.in2’.

NOD(P,1)
NOD(IP,1)

I*.I.(.)D(IP,I)

I

NOD(IP,IE)

NOD@IP,2) (IP=1)
NOD(P,2) (IP=2)

NOD(IP.2) (IP=NPLATE)

I

Node-line index number of edge # IE of plate strip # IP. Defines the connectivity of
the model by specifying the two node lines to which each plate strip attaches. Node-
line numbers and plate strip numbers must match those used to specify the geometry
in ’pasco.in’. Plate-strip numbers are sequential, and correspond to initial PASCO
plate strip numbers (i.e. before the application of HCARD conversions). IE is the
edge number, [E=1 for Y=0, IE=2 for Y=B(IP).

BNODE(1)

I

BNODE(2)

I

BNODE(IB) Index numbers of two "boundary" node lines at which boundary conditions are applied.
IB=1 nominally corresponds to the global Y=0 boundary, IB=2 nominally corresponds
to the Y=B(Global) boundary. The boundary node lines need not span the width of the
configuration, but if they do not, then global load NY may not be computed correctly.
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BCVEC(1,IB)
BCVEC(1,IB)
I

BCVEC(2,IB) BCVEC(3,IB) BCVEC@4,IB) (IB=1)
BCVEC(2,IB) BCVEC(3,IB) BCVEC@4,IB) (IB=2)
I I I

BCVEC(IC,IB) Boundary-condition indicator for component # IC of boundary node-line # IB. The

following table lists options and components:

IC Comp. BCVEC(IC,IB)
1 U, Fx 1or2

2 V, Fy lor2or3

3 W, Fz lor2

4 dw/dy, M 1or2

Note that the four components are specified in the opposite order compared to
PASCO.

BCVEC = 1 Control the generalized displacement. Set to zero (except for IC=2, where V may be
non-zero).
BCVEC =2 Control the generalized force. Set to zero (except for IC=2 for which Fy (=NY) may
be non-zero).
BCVEC = 3 IC=2 only. Keep the edge straight w.r.t. global V, but control the mean global NY
load.
NCU NCWwW
I I
NCU Number of axial displacement constraints, each end. Axial displacement U is constrained

NCW

to follow the effective end-shortening. This is imposed only on modes with odd
longitudinal halfwave numbers. These constraints may only be used with CONTRL='D".

Number of slope (dW/dX) constraints, each end. The slope is measured with respect to
the local coordinate directions of specified plate strips.

Conditional - include only if NCU 21 :

IPCU(1)
IPCU(2)

IPCUNCU)
I

IPCU(I)

YCU(I)

YCUQ1)
YCU(2)

YCUNNCU)
R

Plate strip on which the axial displacement constraint is imposed.
Nominal location Y on plate strip # IPCU(I) where the constraint is applied. The actual

point of application will be at the closest available discretization point. See the description
of parameters NINTN and NINT(IP).
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Conditional - include only if NCW > 1 :

IPCW(1) YCW(1)
IPCW(2) YCW(2)
IPCWINCW) YCW(NCW)
I R
IPCW(I)  Plate strip on which the slope displacement constraint is imposed
YCW() Nominal location Y on plate strip # IPCW(I) where constraint is applied. The actual point
of application will be at the closest available discretization point. See the description of
parameters NINTN and NINT(IP).
NSPU NSPW
I I
NSPU Number of rotational springs (at each end) restraining dU/dY (Y - Local plate-strip axis).
NSPW Number of rotational springs (at each end) restraining dW/dX. (W - Local plate-strip

deflection).

Conditional - include only if NSPU 2 1 :

IPSPU(1) YSPU(1) KSPU(1)
IPSPU(2) YSPU(2) KSPU(2)
IPSPU(NSPU) YSPU(NSPU) KSPU(NSPU)
I R R

IPSPU(I)  Plate strip on which rotational spring acts (each end)

YSPU(I)  Nominal location Y on plate strip # IPSPU(I) where the spring acts. The actual location
will be at the closest available discretization point. See the discussion of discretization
using parameters NINTN and NINT(IP).

KSPU(I)  Rotational-spring constant (Moment/Radian)

Conditional - include only if NSPW > 1 :

IPSPW(1) YSPW(1) KSPW(1)
IPSPW(2) YSPW(2) KSPW(2)
IPSPW(NSPW) YSPW(NSPW) KSPW(NSPW)
I R R
IPSPW(I) Plate strip on which rotational spring acts (each end)
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YSPW(I)  Nominal location Y on plate strip # IPSPW(I) where the spring acts. The actual location
will be at the closest available discretization point. See the discussion of discretization
using parameters NINTN and NINT(IP).

KSPW(I) Rotational-spring constant (Moment/Radian)

Comment line - not used for data.
**3¥x DISCRETIZATION AND REFERENCE VALUES ***%

NINTN
I

NINTN Guides the discretization of each plate strip in the local Y-direction. Used for the
finite-difference computation of the second-order displacement fields and for
numerical integration.

Specify the discretization of each plate strip individually using NINT(IP)

N is an even integer 24, The widest plate strip in the structure will have N+1
discretization points evenly spaced over N intervals. The remaining plate strips are
discretized such that interval widths on all plate strip are approximately equal, except
that no plate strip will have less than 4 intervals.

Z o

Conditional - include only if NINTN = 0 :
NINT(1) NINT(2) ... NINT(NPLATE)
I I 1

NINT(IP) Even integer > 4 giving the number of discretization intervals in the Y-direction on plate
strip # IP. Note: Plate strips with matching indices ILBWAL(IP) must have matching
numbers NINT(IP).

Conditional - include only if ICOORP=2 (creating PATRAN-readable output files):
NEY(1) NEY(2) ... NEY(NPLATE)
I I I

NEY(IP)  Even integer > 2 giving the number of discretization intervals in the Y-direction on plate
strip # IP 1o be used for graphical visualization with PATRAN. Generally, NINT(IP) is
so large that if all available intervals are used in producing graphical images in PATRAN,
the images are too cluttered. NEY(IP) must be selected so that NINT(IP) is an integer
multiple of NEY(IP), i.e. NINT(IP)=N*NEY(IP), where N is a positive integer.
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IPHREF IPWDET IPDFL IYDFL
I I I |

IPHREF Controls the reference thickness used in normmalizing modal amplitudes and
displacements. The reference thickness HREF used by NLPAN is listed in file
‘nlpan.out’.
0  HREF is the thickness for plate strip # 1
IP HREF is the thickness for plate strip # IP

IPWDET Determines the plate strip where the characteristic amplitude of a buckling mode
(used for normalizing the modal amplitudes) is measured
0  The characteristic amplitude is the maximum displacement in the structure
IP The characteristic value is the maximum displacement on plate strip # IP

IPDFL IPDFL and IYDFL control the transverse location where a characteristic displacement
is computed and reported during the nonlinear analysis. The displacement
(normalized by HREF) is printed in 'nlpan.out’ for each equilibrium solution, labeled
as WCN. This feature serves only as a user convenience.
IP  Deflection is measured on plate strip # IP

IYDFL Determines the location on plate strip # IPDFL where the characteristic deflection is
computed. Where B is the width of plate strip # IPDFL:
-1 Compute deflection at Y=0, X=L/2, plate strip # IPDFL
Compute deflection at Y=B/2, X=L/2, plate strip # [IPDFL
Compute deflection at Y=B, X=L/2, plate strip # IPDFL

_— O

Comment line - not used for data.
**xx LOADING AND MODELLING OPTIONS ****

CONTRL COMPAT
C*1 C*1

CONTRL Specifies the type of control used for the generalized in-plane loads.
Note: for simple rectangular plates, both types of control yield the same load/end-
shortening relationship, but for more complex configurations, a discrepancy arises
between the two methods. A correction is under development to fix this
discrepancy, but currently CONTRL="D"’ is believed to provide greater accuracy.
‘D’ Displacement control
L’ Load control

COMPAT Specifies whether displacement compatibility is enforced in the linear solution for
multiply connected cross sections. See the discussion in the section "NLPAN
Modes of Operation.”
Y’ Displacement compatibility is enforced. In general, NLPAN must be run first in
a pre-processor mode (ILNPRT=2) to compute values NX(1), NY(1), FNY(IP) to
put in file 'pasco.in’. These are printed in file 'nlpan.out’.
N’ Displacement compatibility is either not enforced, or is not applicable.
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ILSET NXGL NYGL EPXL EPYLG
I R R R R
Note: This input set must be present, but values are used only if ILNPRT=2 (pre-processor
mode). If ILNPRT=0 then ILSET=1 is assumed, and NXGL and NYGL (NX(1), NY(1))
are taken from file "pasco.in’.

ILSET Determines which two parameters define the unit in-plane load system. All loads and
strains defined positive for tension/extension. Unit in-plane loading must generally
be tensile, because buckling eigenvalues are assumed to be negative.

1  NXGL, NYGL
2 NXGL, EPYLG
3 EPXL, EPYLG
4 EPXL, NYGL

NXGL Positive unit value for global X-normal axial load per unit width based on global
width B. Equivalent to NX(1) in PASCO input.

NYGL Unit value for global Y-normal axial load per unit length based on length L.
Equivalent to NY(1) in PASCO input.

EPXL Unit value for axial strain in X-direction

EPYLG Unit value for mean Y-normal strain in skin (change in panel width per unit width)

PRUNIT
R
PRUNIT Unit pressure load, force per unit area. See the description of parameter BETAA in
input file 'nlpan.in2’,
LOCGLO
C*1
LOCGLO ’Y’/'N’ Used to control modifications to the second-order displacement fields necessary

to improve the solution accuracy, particularly in cases of local-global mode
interaction. In general, set LOCGLO="Y’ unless INDPLT=1 (simple plate
analysis). '



INDPLT

INDPLT 1  Configuration is a rectangular plate with a single reference plane (may be constructed
from several linked plate strips if no node-line offsets are used). Implies that
u;=v;=w;;=0. This reduces the cost of the analysis by avoiding unneeded calculations
and data storage.

2 Complex configuration with multiple reference planes. Implies that u,, v,, w;; are in
general not zero.

Comment line - not used for data.
¥*¥¢x | OAD, WIDTH, WALL INDEXING ****

ILBWAL(1) ILBWAL(2) ... ILBWAL(NPLATE)
I I I

ILBWAL(IP)  See the discussion in the section "General Aspects of Specifying Geometry."
ILBWAL(IP) is an integer in the interval 1 to NLBWAL, where NLBWAL is the
number of unique combination of:

i) wall properties,

ii) width B, and

iii) unit in-plane loads,

among all plate strips in the structure. ILBWAL(IP) specifies which set of
characteristics plate strip # IP has. These indices must match the values assigned by
PASCO. NLBWAL is passed to NLPAN via file 'modes.in’ created by PASCO.

NKWALL
I

NKWALL Number of different laminates defined in input file *pasco.in’.

--- End of file 'nlpan.in1’ ---
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File 'nlpan.in2’ input lines. (This file contains the control parameters for the nonlinear analysis,

the control parameters for post-processing, and the modal-imperfection amplitudes. File 'nlpan.in2’ is read
every time NLPAN is run, including runs in the RESTART mode.)

NIMP
I
NIMP

1ZCIP

SWITCH

1ZCIP SWITCH
I Logical

Number of sets of modal imperfection amplitudes for use in an equal number of
consecutive nonlinear analysis run. NIMP lies in the range 1 to 30

Controls the zeroing of coefficients CIP(I) (in the nonlinear algebraic equations)
which, when non-zero, cause the initial response to in-plane loading to be nonlinear.
Each coefficient CIP(I) corresponds to a particular VIPASA buckling mode
incorporated in the NLPAN analysis. CIP(I) may be non-zero either for physical
reasons, indicating that the initial response is truly nonlinear, or may be non-zero due
to approximations used in the method of analysis. One application is to set IZCIP=1
to eliminate an initial bowing response characteristic of bowing imperfections.

0 Do not zero the coefficients CIP(I).

-1 Set CIP(I) to zero for all modes.

M Set CIP(I) to zero if NWAVEA(I)<= M, where NWAVEA(]) is the longitudinal
halfwave number for the VIPASA buckling mode

Flag used in an investigation of compound solution branching. Set to .FALSE.. (If
set to .TRUE., then at points of near-simultaneous solution branching in two modes,
the initial branch-switching step will be controlled by a specified increment to the
non-critical mode rather than by a specified increment to the critical mode.)

QO(D)
QO(1)

QU(1)
R

Q(I)

Q0(2) ... QO(NEIG) (IIM=1)
Q0(2) ... QO(NEIG) (IIM=2)

Q&(Z) Q.(;(NEIG) (IIM=NIMP)
R R

Modal imperfection amplitude for VIPASA buckling mode number I, where I varies from
1 to NEIG, where NEIG is the number of modes incorporated in the analysis. Modal
amplitudes are normalized based on a maximum deflection equal to the reference
thickness value HREF (listed in ’nlpan.out’). Characteristics of the modes including
critical load level, halfwave number, symmetry, and total number NEIG are listed in the
output file 'nlpan.out’.
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QF(1)
R

QF()

QF(2) ... QF(NEIG)
R R

Modal amplitudes used to specify forced end displacements or end rotations. QF input
must be present, but is used only when displacement constraints are used (NCU 22or
NCW 2 1). These values differ from imperfection amplitudes QO(I) in that they are stress-
producing. Amplitudes QF are significant only in terms of the associated generalized
displacements at the longitudinal ends. They are intended for use in simulating a forced
initial rotation of the panel ends.

NRANGE

NRANGE

Number of load ranges specified. Intended for use in modelling asynchronous application
of multiple load types. Within each load range, the in-plane, pressure, and thermal load
parameters all vary linearly with a single generalized load parameter. All generalized loads
are continuous from one range to the next, but the load rates are discontinuous. NRANGE
must be in the range 1 to 5.

LAMDAA(IR) BETAA(IR) HEATA(IR) (IR=1)
LAMDAA(IR) BETAA(IR) HEATA(IR) (IR=2)

LXMDAA(IR) BETAA(I"R.) HEATA(IR) (IR.;NRANGE)

R

LAMDAA

BETAA

HEATA

R R

These are the target values for the three load parameters, used to define the NRANGE
load ranges. All three parameters are assumed to be zero initially.

In-plane load parameter. This is a normalized value, where the reference value REFLAM
is listed in output file 'nlpan.out’. LAMDAA=1.0 corresponds to the critical buckling load
for the case of pure in-plane loading.

Load multiplier for transverse pressure. The applied pressure P is given by
P=BETAA*PRUNIT, where PRUNIT is the unit pressure specified in file 'nlpan.in1’.

Load parameter for thermal loading. In a given plate strip, the thermal load T is given by
T=HEATA*TUA(IP), where TUA(IP) is the unit temperature specified in file ‘nlpan.in1’.
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TOL ITMAX uu \A%
R I R R
These are input parameters for subroutine ZROOT, which uses Barstow’s method to find the roots of
a polynomial with real coefficients. The polynomial equation arises when applying Thurston’s method
for negotiating solution branching. The default values provided generally work well, and need to be
changed only if a wamning message is issued.
TOL Tolerance to measure convergence. Default = 1.E-12
0. Use default value.
ITMAX Maximum number of iterations allowed. Default = 20
0  Use default value
Uy, VvV Starting values used in iterative solution procedure. The starting values are
automatically varied in NLPAN if convergence problems are indicated. Defaults:
UU=-1, Vv=2,
0. Use default value.
ILSTM CCRIT MAXIT
I R I
ILSTM Positive integer giving the maximum permitted number of load steps.
CCRIT Tolerance to measure convergence of the iterative procedures for solving the nonlinear
equilibrium equations. Suggested value: 1.E-5
MAXIT Maximum number of iterations allowed in the iterative solutions procedures. With the
methods used, convergence is usually rapid. Suggested value: 6
DSNOM DSFACT DSMIN DELQ EVCUT DSQUIT
R R R R R R

These parameters control the solution step sizes, and specify cutoff and decision values in the nonlinear
solution strategies. DS refers to the arc-length increment used from one solution to the next in a Riks-
type approach of arc-length control. The modal amplitudes, load parameters, and Lagrange multipliers
(when needed) are all normalized to take on values with order of magnitude unity, so DS should be
interpreted accordingly. For all six parameters, an input value 0.0 forces the use of the default value.

DSNOM

DSFACT

DSMIN

Nominal value used for DS. DS will never exceed this value. Default: 0.3
Factor for reducing DS compared to DSCRIT, where the latter is the arc-length increment
predicted (based on extrapolation) to lead to a critical stability point. If
(DSFACT*DSCRIT)<DSNOM then DS=DSFACT*DSCRIT. Default: 0.6

Minimum value permitted for DS before a solution at the critical point solution is
attempted. Default: 0.002
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DELQ

EVCUT

DSQUIT

Step size used for initiating a solution along a new path at a branch point. Approximately
equivalent to an increment in a modal amplitude. Default: 0.005

If a solution branch point is detected, EVCUT is used to select between a one-mode and
two-mode solution branching analysis. If the first two eigenvalues of the tangent stiffness
matrix are separated by more than EVCUT, a single-mode branching analysis is
performed, otherwise a two-mode branching analysis is performed. Setting EVCUT small
tends to force a single-mode branching analysis, in which case DELQ must also be small
to avoid stepping past secondary branch points. Default: 0.01

Minimum permitted value for DS. If DS is less than DSQUIT and solution convergence
is not achieved, execution is halted. Default: 0.24*DSMIN

IFREQ

IFREQ

21 Postprocessing requests are processed at every IFREQ’th load step.
0  No post-processing

(Note: This and all following input records are required only if [IFREQ>0)

IPDISP
I

IPDISP
IPSTRN
IPSS

IPSRES

IPQY

IPPROF

IPSTRN IPSS IPSRES IPQY IPPROF
I I I I 1

Post-processing control parameters. (Results are computed at model locations which
are specified in following input records.) Each parameter may be specified as O or
1, with the following effect:

1 Output is requested.
No output is requested

Print displacement values to file displ.out’

Print mid-surface strains and curvatures to file ’strain.out’
Print surface strains EPSx and EPSy to file ’strain.out’
Print stress resultant values to file 'sres.out’

Print force resultant QY which acts in the Z-direction on the Y-normal face in a plate
strip, to file 'sres.out’

If ICOORP#2: print the displacement profile (referred ro local plate-strip coordinate
directions) at a constant X-station to file 'displ.out’.

If ICOORP=2: print a PATRAN-readable displacement-results file 'nlpanNNN.dis’,
where NNN is the corresponding load step number. The displacements are computed
at locations determined by parameters NXINT and NEY(IP) of input file 'nlpan.in1’.
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NINTX NXLOC

NINTX 21 If NINTX21 then NINTX is the number of uniform intervals in the X-direction
determining where postprocessing results are computed. NINTX may be up to 100
for displacements, and up to 50 for strains and stress resultants. If NINTX>1 then
NXLOC is forced to NINTX+1,

0  Use NXLOC and XLOCN input to specify X locations.

NXLOC 21 Number of specific X values used for post-processing. Ignored if NINTX>1.

Conditional - include only if NINTX=0 and NXLOC>0:
XLOCN(IX) (IX=1)
XLOCN(IX) (IX=2)

Xi:OCN(I X) (IX=NXLOC)

R
XLOCN(IX) Value of X, as a fraction of length L, where results are to be computed. 0.0 <
XLOCN(IX)<1.0
NYLOC
I
NYLOC  Number of cross-sectional stations where results are computed. Maximum allowable: 100
IP(1Y) IDAY) (dY=1)
IPIY) IDY) (1Y=2)
IP(IY) ID{IY) (IY=NYLOC)

I I
IP(TY) Index number of the plate strip where results are to be computed.
ID(Y) Index number of the discretization point in the Y-domain of plate strip # IP(IY) where
results are 1o be computed. Index ID(IY) lies in the range 1 to (NINT(IP)+1). Values
NINT(P) (IP=1,2, ..., NPLATE) are listed in the output file 'nlpan.out’, and can be
specified directly for each plate strip in input file 'nlpan.inl’.

--- End of file ’input.in2’ ---
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Example Input Files

Unit cell representation of a T-stiffened panel. The input files for a test case designated UNITA are
listed below. UNITA refers to a unit-cell representation of a T-stiffened panel. The general configuration
is that shown in Figure E1(a). This model was used to analyze a panel which was tested experimentally.
A comparison of analytical and experimental results is presented in [E2]. The test panel had three evenly
spaced T-stiffeners. The analytical model includes only a single stiffener with a half-bay of skin on each
side, with symmetry conditions imposed at the side edges of the skin. Three different laminates were
defined to model the skin, the stiffener flange, and the stiffener blade, respectively, and the mean values
of lamina thickness measured for the test panel were used in the analysis. The thickness of the adhesive
used to bond the stiffeners to the skin is represented in file *pasco.in’ by T(10); the in-plane stiffness of
the adhesive is neglected. Thickness T(11) is used to specify the offset between the mid-surface of the
stiffener flanges and the mid-surface of the skin. Thickness T(11) is defined in 'pasco.in’ in terms of the
other thicknesses using a constraint equation established by parameters AT and AC. The offset values are
assigned using the first two HCARD records in file 'pasco.in’, and using the IECVZ parameters in file
’nlpan.inl’.

Input file 'nlpan.inl’ features axial displacement constraints at the longitudinal ends at node-line
numbers 3 and 4 (see Figure E1(a)) in order to simulate clamping of the panel ends. The constraint
locations are specified in terms of locations on plate strips 3 and 7 using IPCU and YCU input. The
following modes, specified by input parameters NMUSE, NSOL, MHIN, and ISOL, are used in the
analysis: (1,1), (1,3), (3,2), (3.3), (5,2), (5,3), (7,2), and (7,4). All of these modes have symmetric cross-
sections. The symmetry of the modes is indicated in the output file 'nlpan.out’, and is determined by
comparing the deflections of node-line numbers 2 and 5 (see the NODSYM input in ’nlpan.in1’).

In input file 'input.in2’, an imperfection amplitude QO(5)=0.02 is specified (Q(S) corresponds to mode
(5,2), the designated critical local mode), and forced end rotation is imposed through input QF(1)=1.79.
Mode 1 (mode (1,1)) is a bowing type mode. The longitudinal variation of displacements for mode 1 is
given approximately by [HREF SIN(PI X / L)], where HREF=0.0435 in. (the skin thickness) and L=20
in. (the panel length). Using these values, it can be shown that QF(1)=1.79 corresponds to an end rotation
of 0.7 degrees, which is the value of end rotation imposed on each end of the test panel during one
experiment. Additional discussion of the analysis and tests is found in [E2]. The PATRAN-generated
image of a deformed panel presented in Figure E2 corresponds to this NLPAN model. The deformation
state of the panel was computed for an equilibrium solution at the theoretical elastic limit-load point; the
displacements have been amplified for clarity.

In the listings of files ’'nlpan.in1’ and ’'nlpan.in2’, comments are set apart from input data using

exclamation points (!). The exclamation points are used only for visual purposes, and serve no other
function in the input files.
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File 'pasco.in’ for the UNITA example.

UNITA - TEST PANEL A - UNIT-CELL REPRESENTATION
&CONDAT
&END
&PANEL
B=1.43,.49,49,1.43,.49,.49, 49,
EL=20.,
CONV1=50000.,
FREQ=0.,
IP=0,
MAXJJI=0,
MAT(1,1)=1,1,1,2,2,2,3,3,3,
T(1)=.00544,.00544,.00544,.00563,.00563,.00563,
.00483,.00483,.00483,.0045,1.E30,
AT(1,1)=4.,0.,0.,4.,0..,0.,0.,0.,0.,1.,-1,,
AC(1)=0.,
THET(1)=0,50,90,0,15,90,0,15,90,0,
KWALL(1,1)=2,-2,1,3,
KWALL(1,2)=5,-5,4,6,
KWALL(1,3)=8,-8,7.9,
IWALL(1)=1,1,1,1,2,2,3,
FSTIFF=10.,
HCARD=6,-8,-5,0,-11,0,-11,
6,-9,-6,0,-11,0,-11,
4,-10,7,90,0,
2,121,10,
13,11,1,-990,9000,2,-8,3,-9,-121,4,0,-990,9000,
ICARD=5,1,2,1,-990,9000,
52,4248,
3,3,4,10,
54,5359,
35,64,
3,6,-990,9000,
ICREP=1,
NOBAY=1,
NX(1)=500.,
&END
&MATER
E1(1)=17.02E6, E2(1)=1.64E6, E12(1)=.80E6, ANU1(1)=.30,
RHO(1)=1.477E-4, ALFA1(1)=0.25E-6, ALFA2(1)=16.2E-6,
ALLOW(1,1)=2,.011,-0.011,0.01,-0.013,0.0155,
E1(2)=16.44E6, E2(2)=1.64E6, E12(2)=.77E6, ANU1(2)=.30,
RHO(2)=1.477E-4, ALFA1(2)=0., ALFA2(2)=0.,
ALLOW(1,2)=2,.011,-0.011,0.01,-0.013,0.0155,
E1(3)=19.17E6, E2(3)=1.64E6, E12(3)=.90E6, ANU1(3)=.30,
RHO(3)=1.477E4, ALFA1(3)=0., ALFA2(3)=0.,
ALLOW(1,3)=2,.011,-0.011,0.01,-0.013,0.0155,
&END
-- End of file ’pasco.in’ --
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File 'nlpan.inl’ for the UNITA example.

UNITA - TEST PANEL A - UNIT-CELL REPRESENTATION

0000 'ICOORP ILNPRT,IEFPRT,IQUPRT
0000 !INGPRT,ICOPRT,IPRINT,IPBUG
'STOLL’ 0 0 !USER, IHALT, MSRCH

'Y'25 ISYMSTR, NODSYM(1), NODSYM(2)
4'Y’ INMUSE, FORCE

2222 INSOL(), I=1, NMUSE

1357 IMHIN(I), I=1,NMUSE

13 ‘ISOL(I,J) J=1,NSOL(I), I=1

23 I=2

23 ! I=3

24 ! I=4

76 INPLATE NNODE

2 INPOFFS

50-110-11 !'PJIECVY(P,1)JECVZ(IP,1),IECVY(IP,2),[ECVZ(IP,2) IPOFFS=1
60-110-11 ! IPOFFS=2
0.110. 'MU(IP) SKVEC(IP), PRVEC(IP) TUA(IP), IP=1
0.110. ! IP=2
0.110. ! IP=3
0.110. ! IP=4
0.0 00. ! IP=5
0.0 00. ! IP=6
90.000. ! IP=7
12 INOD(IP,IE), IP=1

24 ! IP=2

45 ! IP=3

56 ! IP=4

24 ! IP=5

45 ! IP=6

34 ! IP=7

16 !BNODE(B), IB=1,2

2321 ’BCVEC(IC JIB), IC=1 to 4, IB=1

2321 IB=2

20 'NCU NCW

30. 'IPCU(ICU) YCU(ICU), ICU=1

70. ICU=2

00 !NSPU, NSPW

**** DESCRETIZATION AND REFERENCE VALUES ****
12 ININTN

1021 !IPHREF, IPWDET, IPDFL, IYDFL

**** LOADING AND MODELLING OPTIONS *#*#*

‘D" °N’ ICONTRL, COMPAT

1500.0.0.0. !NLSETNXGLNYGL.EPXL,EPYLG

0.0 !PRUNIT

Y’ !LOCGLO

2 !INDPLT

**** LOAD, WIDTH, WALL INDEXING #*#***
1221334 MLBWAL(IP),IP=1NPLATE

3 INKWALL

-- End of file ’'nlpan.inl”’ --
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File 'nlpan.in2'for the UNITA example.

1 0 .FALSE. INIMP, 1ZCIP, SWITCH

0. 0.0.0.0.020.0.0. !QONST(E,IIMP),IE=1,NEIG)
1.790.0.0.0. 0.0.0. !QF(IE),IE=1,NEIG

1 INRANGE

20. 0. 0. ILAMDAA(1), BETAA(1), HEATA(1)
0.0 0.0 'TOL ITMAX UU VV

30 0.00001 6 'ILSTM, CCRIT, MAXIT

.25 .6 .001 .005 .05 0. 'DSNOM,DSFACT,DSMIN,DELQ,EVCUT,DSQUIT
0 'IFREQ

010000 !'IPDISP, IPSTRN, IPSS, IPSRES, IPQY, IPPROF
03 ININTX,NXLOC

0.054 'XLOCN(IX), IX=1

0.406 ! IX=2

05 ! IX=3

2 INYLOC

11 IPAY), IDAY), IY=1

73 ! IY=12

-- End of file ’nlpan.in2’ --

Unit cell representation of a hat-stiffened panel. Input files "pasco.in’ and 'nlpan.in1’ are listed below
for a unit-cell representation of a hat-stiffened laminated composite panel. The hat stiffener includes
mounting flanges. The cross-sectional representation is shown in Figure E3. The slope of the webs of the
hat stiffener (plate strip numbers 7 and 9) relative to the skin is 65 degrees for the configuration described
in the input files. The mid-surfaces of the stiffener flanges are offset from the mid-surface of the skin by
a distance d. Formulas for computing the offset measures EY and EZ between the edges of plate strips
7 and 9 and the mid-surface of the skin are included in Figure E3, along with sketches which show the
geometric details. The cross-sectional proportions and laminate configurations used in the input files were
chosen arbitrarily.

" There are six thickness values T(I) included in input file *pasco.in’. The first three values are lamina
thicknesses. T(4) is the offset between the reference surfaces of the skin and the stiffener flanges. T(S)
and T(6) are the amplitudes of the eccentricity measures EY and EZ, respectively, for plate strip numbers
7 and 9, which are defined as illustrated in Figure E3.
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Figure E3. Unit-cell cross-sectional representation of a hat-stiffened panel,
including the geometric details of the node-line offsets.
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File 'pasco.in’ for a hat-stiffened panel.

HAT - UNIT-CELL REPRESENTATION OF A HAT-STIFFENED PANEL
&CONDAT
&END
&PANEL
B=2.,,.75,2.267855,.75,2.,.75,1.5,1.,1.5,.75,
EL=15,,
CONV1=50000.,
FREQ=0.,
IP=0,
MAXJJJ=0,
MAT(1,1)=1,1,1,
T(1)=.005,.005,.005,.07,.0634,.0296,
THET(1)=0,45,90,
KWALL(1,1)=2,-2,2,-2,1,3,
KWALL(1,2)=2,-2,1,3,2,-2,1,3,
KWALL(1,3)=2,-2,1,3,2,-2,1,3,
KWALL(1,4)=2,-2,1,3,1,1,2,-2,1,3,
IWALL(1)=1,1,1,1,1,2,34,3,2,
FSTIFF=10,,
HCARD=6,-11,-6,0,-4,0,4,

6,-12,-7,-5,-6,0,0,

6,-13,-9,0,0,5,-6,

6,-14,-10,0,4,0,4,

4,-15,12,-65,0,

4,-16,13,65,0,

4,17,15,8,16,

14,18,1,-990,9000,2,-11,3,-17,4,-14,5,0,-990,9000,
ICARD=5,1,2,1,-990,9000,

5,2,3,2,3,11,

3,3,6,3,

3,34,15,

34,58,

3,5,6,16,

5,6,74,7,14,

3,7.8.5,

3,8,-990,9000,
ICREP=1,
NOBAY=1,
NX(1)=1,,
NY(1)=0,,
&END
&MATER
E1(1)=18.5E6, E2(1)=1.64E6, E12(1)=.87E6, ANU1(1)=.30,
RHO(1)=1.477E-4, ALFA1(1)=0.25E-6, ALFA2(1)=16.2E-6,
ALLOW(1,1)=2,.011,-0.011,0.01,-0.013,0.0155,
&END
-- End of file "pasco.in’ --
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File 'nlpan.in1’ for a hat-stiffened panel.
HAT - UNIT-CELL REPRESENTATION OF A HAT-STIFFENED PANEL

0000 !ICOORP,ILNPRT,IEFPRT,IQUPRT
0000 !'INGPRT,ICOPRT,IPRINT,IPBUG
'STOLL’ 1 0 !'USER, IHALT, MSRCH

'Y'18 ISYMSTR, NODSYM(1), NODSYM(2)
2y INMUSE, FORCE

12 INSOL(I), I=1,NMUSE

15 !MHIN(), I=1,NMUSE

1 'ISOL(1,J), J=1,NSOL(D), I=1

13 ! I=2

10 8 INPLATE NNODE

4 !NPOFFS

60404 HP,IECVY(IP,1),JECVZ(IP,1),JECVY(IP,2) IECVZ(IP,2) IPOFFS=1
7-5-600 ! IPOFFS=2

9005-6 ! IPOFFS=3

10040-4 ! IPOFFS=4

0.110. IMU(IP), SKVEC(IP), PRVEC(IP) TUA(IP), IP=1
0.110. ! IP=2
0.110. ! IP=3
0.110. ! IP=4
0.110. ! IP=5
0.0 00. ! IP=6
-65.000. ! IP=7
0.0 00. ! IP=8
65.000 ! IP=9
0.0 00. ! IP=10
12 INOD(IP,IE), IP=1

23 ! 1IP=2

36 ! IP=3

67 ! IP=4

78 ! IP=5

34 ! IP=6

45 ! IP=7

56 ! IP=8

67 ! =9

18 !BNODE(B), 1B=1,2

2321 !BCVEC(IC,IB), IC=1 t0 4, IB=1

2321 ! IB=2

00 INCU, NCW

00 INSPU, NSPW

**** DESCRETIZATION AND REFERENCE VALUES ****

12 ININTN

1030 !IPHREF, IPWDET, IPDFL, IYDFL

**** LOADING AND MODELLING OPTIONS **#*

‘DN’ ICONTRL, COMPAT

11.0.0.0. ILSET NXGL NYGL. EPXL EPYLG

0.0 !PRUNIT

Y’ !LOCGLO

2 !INDPLT

**** LOAD, WIDTH, WALL INDEXING ****
1232145654 'ILBWAL(IP),IP=1 NPLATE
4 INKWALL

-- End of file ’'nlpan.inl’ --
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Type of Load Axis 1 Load Axis 2
Load Control
Option 1 Option 2
( BCVEC(2,IB)=1, ( BCVEC(2,IB)=2 or 3,
IB=1,2) IB=1 or IB=2)
Displacement Au=\Au, Av=2AAv, Ny =0
Control
(CONTRL=D")
I.zoad NXG = )\‘NXGL Z; = 0 N)G = MyGL
Control
(CONTRL='L")

Table 1. Options for Control of the In-Plane Loading. IB = boundary index number (1 or 2).
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Load | Flat In-Plane Loading Control Param. Option for
Case | Skin? Characteristics (CONTRL in Load Axis 2
Table 1) in Table 1
A Yes | Constant ‘D' /'L if Ne=0 2
ratio:  [-Nyg UNyo L' if Ne#0
NyG : NxG X
Y
AN
P
'NXG
B Yes Av=0 D' /'L 1
Yo
va( X
y
v:O
ﬁ'NXG
C Yes | Constant D' 1
ratio:
Av : Au
D No Nominal D' /L 1¥/2
uniaxial -N
loading Q X
ﬁ'Nm

* N,c =0 in prebuckling; nonlinear contributions to Av are zero.

Table 2.  Input Parameters Corresponding to Several Different Cases for In-Plane Loading.
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Component Option 1 Option 2 Option 3
4{®)) (BCVEC(IC,IB)=1) | (BCVEC(C,IB)=2) | (BCVEC(IC,IB)=3)
1. U~F Uy =0 F=0 -
2 WWH V'=Avp Fy=nN, V=0
F—; = n}N)’c
3. W~ F»? W'=0 F'=0 -
4: an' Mu \Pn = 0 Mn = 0 -

Table 3.  Options Available for Specifying Conditlons Along the Boundary Node-Lines. IB = boundary index
number (1 or 2).

Case Simplification
CONTRL = D' A;=0 (,j=1,2,.)
{ug} =0
Ny =0 {us} =0
-Oor-

BCVEC(2,IB)=1,

(IB=1,2)
BCVEC(2,IB) # 3 B;=0 (=1,2,..)
(IB=1 or 2) (g} =0

Table 4. Simplifications to the General Displacement Form for Special Cases.
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Symmetrical Structure

Unsymmetrical Structure

Local 1. (m,1) 1. (m,1) (m,2)* ...
Postbuckling® 2. (M) 2. 3m,1) Gm2) ..
(Bmy,i.) (3miz)
3. 5m,1) 5my,2) ...
3. (my,i5)
(S’nhil)
Global 1. (1,1) 1. (1,1) (1,2)®
Postbuckling,
s.s. ends 2. (3,51) (3.2 2. 3,1) (32) ...
Global 1. (1,1) 1. (1,1) (1,2)*
Postbuckling, (3.s1) (3.2) 3.1 (32 ..
clamped ends
2. (5.%) (5,82 2. 5152 ..
Local/Global Al. (1,1 1. (1,1) (1,2)*

Mode Interaction,
s.S. ends

() (mu,uy)

2. (Im+2,u,) (m+2,15)
(mr2,u) (m-2,u2)

Bl. (1,1)
(my,51) (my,s2)

2. (m,+2.s.) (”114‘2,82)
(m-2,5,) (mr2,52)

(m,1) (m2) ...

2. (m+2,1) (mA2,2) ...
(me2,1) (mr2.2) ...

Local/Global Al. (1,1 1. (1,1) (1,2)*
Mode Interaction, (3.5) (3.s2) 3.1 @32 ..
clamped ends (mu,u) (mu,u) (m,1) (m,2) ...

(m+2,u1) (m,+2 y uz)
(mr2,u) (m-2,u))

BI. (1,1)
(3.51) (3.2
(mu,51) (m,52)
(mr+2,5) (mc+2,57)
(mr2,5,) (mr2,5,)

(mr+2,1) (m+2,2) ...
(mr2,1) (mr2,2) ...

m, - Critical halfwave number for local buckling.

(m,u) - Unsymmetric mode.

(m,s) - Symmetric mode.

1. - Essential modes.

2., 3. - Supplemental modes for improved accuracy.

A, B - Dual mode sets which should each be used independently in separate analyses.
* Modes (m,i), (m,i), ... match mode (m,1) w.r.t. transverse symmetry or lack thereof.
* Include mode (m,2) if its eigenvalue is close to that for (m,1).

Table 5.  Suggested Mode Sets for Analyzing Various Types of Postbuckling Response.
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Temperature Ny

Pressure

LY <\,

Figure 1. Generalized load types modelled by NLPAN.
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S Y
Uy, fy, k Q
» Y, m, f
v,,f fy X
2’°y2 V1,fy-| Auv fX‘l
Wz,
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b Wy, T2y Edge force resultants
0
z

Figure 2. Labeling conventions for a representative plate strip.
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Figure 3. Labling conventions for a linked-plate analysis model.
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a) Symbol definitions.

Node Lines:
Reference Surfaces: -—-—

d—-—-— b

b) Example of a configuration featuring non-zero offsets.

Figure 4. Relative orientation of the side-edge of a plate strip and its associated node line.
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4.4 cm, typ.
e ——61cm —— §

AL A7 7 77X A

I}

.......................

Buckling node lines, typ. —<{|

81.3cm
Free, typ. —a
XA ..............
Potting material : : : : ‘
(/L X 7 77
! »| =38 cm, typ.
17.8 cm, typ. o= jw-
a) Test configuration.
j——3.05cm —
50 plies A
[
22 plies —p»] 3.18 cm
12 plies 16 plies
4 pli \ +45/0, / +45/90
_ plies 4 A S | [ 12+ 2ls

f@———432cm ———»

b) Stiffener details.

¢) Profile of the theoretical buckling mode for a unit cell representation with 17 plate strips
and 12 node lines (buckling mode has 5 longitudinal halfwaves).

Figure 5. I-stiffened graphite/epoxy panel configuration.
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Prebuckling Path —_.~ o’
2r ‘..".o ’ <
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Per g o
.79
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o | ----- o
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Au/Augr
a) Normalized end load versus nomalized end shortening.
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-t b -
5
NLPAN , P
(4 modes) Experiment [25] Pc_r=2'96
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ZS \\ I’I 2s
S A
\
o R /200
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i ~g A A -8
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Ex 2F \B\ \\\ /, IO/
Ex VR AT 1.02
“1¢-Q---0. o __ ’g—‘:~:-~.g.,,_~’.’_e_ --0--0---0--9
0 . . 1 s 1 " L
0 0.2 0.4 y/ 0.6 0.8 1

b) Normalized membrane strains in the skin, mid-length, center bay.

Figure 6. Analytical and experimental results for an I-stiffened panel.
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e Gage C [Gage A

\Gage B

a) Strain gage placement, mid-length, center bay.

KGage D

\ NLPAN )

\ (4_;71051?5) Expenrgent [25] o) B

!

1 2 3
exlexcr

b) Skin strains, mid-bay.

- === NLPAN (4 modes)
Experiment [25]

o

1 2, 3 4
Ex/Exer

¢) Strains at a stiffener flange.

Figure 7. Longitudinal surface strains on an I-stiffened panel.
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(—Symmetry B.C.'s \'

v=0.35

h/B=0.0161
H/B=0.310
L/B=7.60 (NLPAN)
Perjoe /Pcrg =1.05

a) Unit-stiffener-cell analysis model.

Plimit/Pcrg

5 (o) ~
o ® - .
06 - © ® O  itfener compression  Skin compression
® (o}
| W I/h
0.02 0.10
05 o] ® Experiment [26]
—— == NLPAN, orthogonality imposed
-------- NLPAN, orthogonality not imposed
0.4 N | " 1 " 1 " 1 A |
-1.5 -1 -0.5 0 0.5 1 1.5

Normalized Bowing Imperfection, woH

b) Limit loads from experiments, and from analysis with and without
orthogonality imposed between { uij} and {uj}.

Figure 8. Results for an imperfection-sensitive thin-blade-stiffened isotropic panel
loaded in uniaxial compression.

116



fa————10 in. ——

Boundary conditions common to all analyses:
=-10, 10: u=0, N xy =0, w=0
y=-5, 5: u=0, v=0, w=0, w, y=0

20 in.

<Y

Pressure

2 Hu% /

a) Test section and boundary conditions

Lamina properties used in analysis: A [
E1 = 18.5 Msi

E2 = 1.64 Msi
G12 = 0.87 Msi
Vip=03 1.5in.

h=0.08 in., [+45/0/90 2/0/+ 45] ¢
h ply =0.005 in.

¥
ft——1.5in. ]

h=0.04 in., [+45/0/90] s
1l

b) Stiffener and laminate details.

Figure 9. Pressure-loaded panel configuration.

117



8
NLPAN, K=0
6 -
’/’ \\\\ —_— ,/” \\\\
1\24- ’l /_\\ \_-_K_=_1_0__¢’ — e \\
b3 A o o (DO% o] Ooo\ \\
2} ’ / /O—..~_ Q O AV - 0 \ \
V7 - ™~ OOGOCR e \cb\\‘
s O N =30 'd -\
£ ° N _~"“—NLPAN, Clamped O’
-0.5 -0.25 0 0.25 05
y/B
a) Displacements across the width at the mid-length.
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b) Displacements along the length under the stiffener (y=0).
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¢) Displacements along the length on the skin (y/B=.25)

Figure 10. Skin displacements with one atmosphere pressure (14.7 psi).
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Lamina properties:

E2 =1.17 Msi

E1 =225 Msi ? ~
4

G12 = 0.66 Msi B

V12= 022 %
-6

a4 =-.04+10 per degree F

0,=16.7+10 -6 per degree F

h ply =0.005 in.

Laminate configuration: [+45/-45/0/0]s -

(=]
5

Boundary conditions:  x=0, L: u=0, w=0, My =0, Ny =0
y=0, B: v=0, w=0, My, =0, N, =0 *

Buckling temperature: Tcrit = 69.4 deg. F (Ref. [28)) 0
Tcrit = 71.4 deg. F (NLPAN)

a) Plate configuration and properties.

Tref = 69.4 deg. F
h =.020 in.

1.5 b

Normalized center deflection, w/h
|

1 . | L

— T AT Ay ey
-
—

NLPAN, 1 mode

6, 10 modes
3 modes

0 1 2 3
Normalized temperature, T/Tref
b) Center deflection versus temperature.

Figure 11. Laminated composite plate subjected to thermal loading.
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